Analysis and time-delay synchronisation of chaotic satellite systems

被引:8
|
作者
Khan, Ayub [1 ,2 ]
Kumar, Sanjay [1 ,2 ]
机构
[1] Dept Math, Fac Nat Sci, Jamia Millia Islamia, New Delhi, India
[2] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 91卷 / 04期
关键词
Lyapunov exponents; bifurcation diagram; Poincare section map and satellite systems; OBSERVER-BASED APPROACH;
D O I
10.1007/s12043-018-1610-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyse the chaotic satellite system using dissipativity, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan-Yorke dimension. We obtain the equilibrium points of chaotic satellite system and at each equilibrium point, we obtain the eigenvalue of Jacobian matrix of the satellite system to verify the unstable region. We calculate the Kaplan-Yorke dimension, which ensures the strange behaviour of the system. We observe closely the three-dimensional (3D) phase portraits of the satellite system at different parameter values. We plot the Lyapunov exponent graphs corresponding to every 3D phase portrait of satellite systems, to verify the chaoticity of satellite systems. We establish time-delay synchronisation for two identical satellite systems. The simulated and qualitative results are in an excellent agreement.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis and time-delay synchronisation of chaotic satellite systems
    Ayub Khan
    Sanjay Kumar
    Pramana, 2018, 91
  • [2] Synchronisation and Circuit Model of Fractional-Order Chaotic Systems with Time-Delay
    Atan, Ozkan
    IFAC PAPERSONLINE, 2016, 49 (29): : 68 - 72
  • [3] Combination–combination synchronisation of time-delay chaotic systems for unknown parameters with uncertainties and external disturbances
    Ayub Khan
    Mridula Budhraja
    Aysha Ibraheem
    Pramana, 2018, 91
  • [4] Combination-combination synchronisation of time-delay chaotic systems for unknown parameters with uncertainties and external disturbances
    Khan, Ayub
    Budhraja, Mridula
    Ibraheem, Aysha
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [5] SIMPLE MEMRISTIVE TIME-DELAY CHAOTIC SYSTEMS
    Viet-Thanh Pham
    Buscarino, Arturo
    Fortuna, Luigi
    Frasca, Mattia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [6] Robust control of time-delay chaotic systems
    Hua, CC
    Guan, XP
    PHYSICS LETTERS A, 2003, 314 (1-2) : 72 - 80
  • [7] Anticipation in the synchronization of chaotic time-delay systems
    Masoller, C
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 295 (1-2) : 301 - 304
  • [8] Reconstruction of time-delay systems from chaotic time series
    Bezruchko, BP
    Karavaev, AS
    Ponomarenko, VI
    Prokhorov, MD
    PHYSICAL REVIEW E, 2001, 64 (05): : 6 - 056216
  • [9] Reconstruction of time-delay systems from chaotic time series
    Karavaev, AS
    Ponomarenko, VI
    Prokhorov, MD
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 101 - 104
  • [10] Adaptive control of uncertain time-delay chaotic systems
    Zhuhong ZHANG (Department of Mathematics
    JournalofControlTheoryandApplications, 2005, (04) : 357 - 363