Homoclinic signatures of dynamical localization

被引:4
|
作者
Chacon, R. [1 ]
机构
[1] Univ Extremadura, Dept Fis Aplicada, Escuela Ingn Ind, E-06071 Badajoz, Spain
关键词
D O I
10.1209/0295-5075/77/30001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is demonstrated that the oscillations in the width of the momentum distribution of atoms moving in a phase-modulated standing light field, as a function of the modulation amplitude lambda, are correlated with the variation of the chaotic layer width in energy of an underlying effective pendulum. The maximum effect of dynamical localization and the nearly perfect delocalization are associated with the maxima and minima, respectively, of the chaotic layer width. It is also demonstrated that kinetic energy is conserved as an almost adiabatic invariant at the minima of the chaotic layer width, and that the system is accurately described by delta-kicked rotors at sufficiently large zeros of the Bessel functions J(0)(lambda) and J(1)(lambda). Numerical calculations of kinetic energy and Lyapunov exponents confirm all the theoretical predictions.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Statistical signatures of photon localization
    Chabanov, AA
    Stoytchev, M
    Genack, AZ
    NATURE, 2000, 404 (6780) : 850 - 853
  • [32] Statistical signatures of photon localization
    A. A. Chabanov
    M. Stoytchev
    A. Z. Genack
    Nature, 2000, 404 : 850 - 853
  • [33] Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method
    D. A. Grechko
    N. V. Barabash
    V. N. Belykh
    Lobachevskii Journal of Mathematics, 2021, 42 : 3365 - 3371
  • [34] Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems
    El-Dessoky, M. M.
    Yassen, M. T.
    Saleh, E.
    Aly, E. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11859 - 11870
  • [35] New analytical technique for predicting homoclinic bifurcations autonomous dynamical systems
    Belhaq, M
    MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (01) : 49 - 58
  • [36] Hyperbolic homoclinic points of Z(d)-actions in lattice dynamical systems
    Afraimovich, VS
    Chow, SN
    Shen, WX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1059 - 1075
  • [37] Continuum-wise expansive homoclinic classes for robust dynamical systems
    Manseob Lee
    Advances in Difference Equations, 2019
  • [38] Hyperbolic Homoclinic Points of Zd-Actions in Lattice Dynamical Systems
    Afraimovich, V. S.
    Chow, S.-N.
    Shen, W.-X.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 6 (06):
  • [39] EXISTENCE OF TRANSVERSAL HOMOCLINIC ORBITS IN HIGHER DIMENSIONAL DISCRETE DYNAMICAL SYSTEMS
    Peng, Chen-Chang
    Chen, Kuan-Ju
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03): : 1181 - 1197
  • [40] LIMIT-THEOREM FOR A DYNAMICAL SYSTEM IN THE PRESENCE OF RESONANCES AND HOMOCLINIC ORBITS
    WOLANSKY, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) : 300 - 335