Homoclinic signatures of dynamical localization

被引:4
|
作者
Chacon, R. [1 ]
机构
[1] Univ Extremadura, Dept Fis Aplicada, Escuela Ingn Ind, E-06071 Badajoz, Spain
关键词
D O I
10.1209/0295-5075/77/30001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is demonstrated that the oscillations in the width of the momentum distribution of atoms moving in a phase-modulated standing light field, as a function of the modulation amplitude lambda, are correlated with the variation of the chaotic layer width in energy of an underlying effective pendulum. The maximum effect of dynamical localization and the nearly perfect delocalization are associated with the maxima and minima, respectively, of the chaotic layer width. It is also demonstrated that kinetic energy is conserved as an almost adiabatic invariant at the minima of the chaotic layer width, and that the system is accurately described by delta-kicked rotors at sufficiently large zeros of the Bessel functions J(0)(lambda) and J(1)(lambda). Numerical calculations of kinetic energy and Lyapunov exponents confirm all the theoretical predictions.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Quantum localization through interference on homoclinic and heteroclinic circuits
    Sibert, E. L., III
    Vergini, E.
    Benito, R. M.
    Borondo, F.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [22] Classical Dynamical Localization
    Guarneri, Italo
    Casati, Giulio
    Karle, Volker
    PHYSICAL REVIEW LETTERS, 2014, 113 (17)
  • [23] Dynamical localization and decoherence
    Saif, F
    Riedel, K
    Schleich, WP
    Mirbach, B
    DECOHERENCE: THEORETICAL, EXPERIMENTAL AND CONCEPTUAL PROBLEMS, 2000, 538 : 179 - 189
  • [24] Dynamical Signatures of Multifunnel Energy Landscapes
    Wales, David J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (27): : 6349 - 6358
  • [25] Dynamical signatures of the Liouvillian flat band
    Liu, Yu-Guo
    Chen, Shu
    PHYSICAL REVIEW B, 2023, 107 (13)
  • [26] Dynamical localization and eigenstate localization in trap models
    Franziska Flegel
    Igor M. Sokolov
    The European Physical Journal B, 2014, 87
  • [27] Dynamical localization and eigenstate localization in trap models
    Flegel, Franziska
    Sokolov, Igor M.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (07):
  • [28] Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method
    Grechko, D. A.
    Barabash, N., V
    Belykh, V. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (14) : 3365 - 3371
  • [30] Continuum-wise expansive homoclinic classes for robust dynamical systems
    Lee, Manseob
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)