Homoclinic signatures of dynamical localization

被引:4
|
作者
Chacon, R. [1 ]
机构
[1] Univ Extremadura, Dept Fis Aplicada, Escuela Ingn Ind, E-06071 Badajoz, Spain
关键词
D O I
10.1209/0295-5075/77/30001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is demonstrated that the oscillations in the width of the momentum distribution of atoms moving in a phase-modulated standing light field, as a function of the modulation amplitude lambda, are correlated with the variation of the chaotic layer width in energy of an underlying effective pendulum. The maximum effect of dynamical localization and the nearly perfect delocalization are associated with the maxima and minima, respectively, of the chaotic layer width. It is also demonstrated that kinetic energy is conserved as an almost adiabatic invariant at the minima of the chaotic layer width, and that the system is accurately described by delta-kicked rotors at sufficiently large zeros of the Bessel functions J(0)(lambda) and J(1)(lambda). Numerical calculations of kinetic energy and Lyapunov exponents confirm all the theoretical predictions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dynamical localization and signatures of classical phase space
    Saif, F
    PHYSICS LETTERS A, 2000, 274 (3-4) : 98 - 103
  • [2] Signatures of inter-band transitions on dynamical localization
    Medhet, Sara
    Yamakoshi, Tomotake
    Ayub, Muhammad
    Saif, Farhan
    Watanabe, Shinichi
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08):
  • [3] Signatures of inter-band transitions on dynamical localization
    Sara Medhet
    Tomotake Yamakoshi
    Muhammad Ayub
    Farhan Saif
    Shinichi Watanabe
    The European Physical Journal D, 2020, 74
  • [4] The Dynamical Core of a Homoclinic Orbit
    Valentín Mendoza
    Regular and Chaotic Dynamics, 2022, 27 : 477 - 491
  • [5] The Dynamical Core of a Homoclinic Orbit
    Mendoza, Valentin
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (04): : 477 - 491
  • [6] QUANTUM SIGNATURES OF HOMOCLINIC TANGLES AND SEPARATRICES
    SCHARF, R
    SUNDARAM, B
    PHYSICAL REVIEW A, 1992, 45 (06): : 3615 - 3628
  • [7] Signatures of homoclinic motion in quantum chaos
    Wisniacki, DA
    Vergini, E
    Benito, RM
    Borondo, F
    PHYSICAL REVIEW LETTERS, 2005, 94 (05)
  • [8] Homoclinic bifurcations in a planar dynamical system
    Giannakopoulos, F
    Küpper, T
    Zou, YK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04): : 1183 - 1191
  • [9] Homoclinic points in complex dynamical systems
    Devaney, RL
    GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS: FESTSCHRIFT DEDICATED TO FLORIS TAKENS FOR HIS 60TH BIRTHDAY, 2001, : 329 - 338
  • [10] TOPOLOGY AND HOMOCLINIC TRAJECTORIES OF DISCRETE DYNAMICAL SYSTEMS
    Pejsachowicz, Jacobo
    Skiba, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (04): : 1077 - 1094