Energy landscapes for a machine learning application to series data

被引:20
|
作者
Ballard, Andrew J. [1 ]
Stevenson, Jacob D. [1 ]
Das, Ritankar [1 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
LENNARD-JONES CLUSTERS; STATIONARY-POINTS; MONTE-CARLO; GLOBAL OPTIMIZATION; PHASE-CHANGES; SURFACES; COEXISTENCE; DYNAMICS; ATTRACTION; NETWORKS;
D O I
10.1063/1.4944672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in terms of distributions of local minima and their properties. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Machine learning landscapes and predictions for patient outcomes
    Das, Ritankar
    Wales, David J.
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (07):
  • [42] Machine Learning Testing: Survey, Landscapes and Horizons
    Zhang, Jie M.
    Harman, Mark
    Ma, Lei
    Liu, Yang
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (01) : 1 - 36
  • [43] A MACHINE LEARNING METHOD TO DETERMINE INTRINSIC DIMENSION OF TIME SERIES DATA
    Turchetti, Claudio
    Falaschetti, Laura
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 303 - 307
  • [44] Machine Learning Method for Changepoint Detection in Short Time Series Data
    Smejkalova, Veronika
    Somplak, Radovan
    Rosecky, Martin
    Sramkova, Kristina
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1407 - 1432
  • [45] Time Series Data Modeling Using Advanced Machine Learning and AutoML
    Alsharef, Ahmad
    Sonia
    Kumar, Karan
    Iwendi, Celestine
    SUSTAINABILITY, 2022, 14 (22)
  • [46] Comparing Machine Learning Algorithms for Medical Time-Series Data
    Helmersson, Alex
    Hoti, Faton
    Levander, Sebastian
    Shereef, Aliasgar
    Svensson, Emil
    El-Merhi, Ali
    Vithal, Richard
    Liljencrantz, Jaquette
    Block, Linda
    Herges, Helena Odenstedt
    Staron, Miroslaw
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2023, PT I, 2024, 14483 : 200 - 207
  • [47] Machine learning for multiphase flowrate estimation with time series sensing data
    Wang H.
    Zhang M.
    Yang Y.
    Measurement: Sensors, 2020, 10-12
  • [48] Machine Learning for Activity Recognition from Movement Time Series Data
    Kim, Young-Nam
    Park, Jin-Hee
    Jang, Gyu-Jin
    Yu, Hye-Yeon
    Kim, Moon-Hyun
    2017 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM), 2017, : 534 - 539
  • [49] Time Series Data Prediction using IoT and Machine Learning Technique
    Kumar, Raghavendra
    Kumar, Pardeep
    Kumar, Yugal
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 373 - 381
  • [50] Dynamic selection of machine learning models for time-series data
    Hananya, Rotem
    Katz, Gilad
    INFORMATION SCIENCES, 2024, 665