Extremal problems on consecutive L(2,1)-labelling

被引:8
|
作者
Lu, Changhong [1 ]
Chen, Lei
Zhai, Mingqing
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] E China Normal Univ, Inst Theoret Comp, Shanghai 200062, Peoples R China
[3] Chuzhou Univ, Dept Math & Comp Sci, Chuzhou 239012, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
channel assignment problems; distance-two labelling; Hamiltonian graphs; L(2,1)-labelling; no-hole coloring;
D O I
10.1016/j.dam.2006.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given graph G of order n, a k-L(2, 1)-labelling is defined as a function f: V(G) -> {0, 1, 2,..., k} such that vertical bar f (u)-f (v)vertical bar >= 2 when d(G) (u, v) = 1 and vertical bar f (u) - f (v)vertical bar >= 1 when d(G) (u, v) = 2. The L(2, 1)-labelling number of G, denoted by lambda(G), is the smallest number k such that G has a k-L(2, I)-labelling. The consecutive L(2, 1)-labelling is a variation of L(2, 1)-labelling under the condition that the labelling f is an onto function. The consecutive L(2, 1)-labelling number of G is denoted by (lambda) over bar (G). Obviously lambda(G) <= (lambda) over bar (G) <= vertical bar V(G)vertical bar - 1 if G admits a consecutive L(2, 1)-labelling. In this paper, we investigate the graphs with (lambda) over bar (G)= vertical bar V(G)vertical bar - 1 and the graphs with (lambda) over bar (G) = lambda(G), in terms of their sizes, diameters and the number of components. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1302 / 1313
页数:12
相关论文
共 50 条
  • [31] L(2,1)-labeling of Block Graphs
    Panda, B. S.
    Goel, Preeti
    ARS COMBINATORIA, 2015, 119 : 71 - 95
  • [32] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [33] On L(2,1)-Labelings of Oriented Graphs
    Colucci, Lucas
    Gyori, Ervin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 39 - 46
  • [34] L(2,1)-LABELING OF TRAPEZOID GRAPHS
    Paul, S.
    Amanathulla, S. K.
    Pal, M.
    Pal, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1254 - 1263
  • [35] L(2,1)-labeling of a circular graph
    Ma, Dengju
    Ren, Han
    Lv, Damei
    ARS COMBINATORIA, 2015, 123 : 231 - 245
  • [36] L(2,1)-coloring of the Fibonacci cubes
    Taranenko, A
    Vesel, A
    ITI 2004: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2004, : 561 - 566
  • [37] The L(2,1)-labeling problem on graphs
    Chang, GJ
    Kuo, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 309 - 316
  • [38] No-hole L(2,1)-colorings
    Fishburn, PC
    Roberts, FS
    DISCRETE APPLIED MATHEMATICS, 2003, 130 (03) : 513 - 519
  • [39] L(2,1)-labelings of subdivisions of graphs
    Chang, Fei-Huang
    Chia, Ma-Lian
    Kuo, David
    Liaw, Sheng-Chyang
    Tsai, Meng-Hsuan
    DISCRETE MATHEMATICS, 2015, 338 (02) : 248 - 255
  • [40] L(2,1)-coloring matrogenic graphs
    Calamoneri, T
    Petreschi, R
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 236 - 247