The L(2,1)-labeling problem on graphs

被引:309
|
作者
Chang, GJ
Kuo, D
机构
[1] Department of Applied Mathematics, National Chiao Tung University
关键词
L(2,1)-labeling; T-coloring; union; join; chordal graph; perfect graph; tree; bipartite matching; algorithm;
D O I
10.1137/S0895480193245339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that \f(x) - f(y)\ greater than or equal to 2 if d(x, y) = 1 and \f(x) - f(y)\ greater than or equal to 1 if d(x, y) = 2. The L(2, 1)-labeling number lambda(G) of G is the smallest number Ic such that G has an L(2, 1)-labeling with max{f(v) : v is an element of V(G)} = k. In this paper, we give exact formulas of lambda(G boolean OR H) and lambda(G + H). We also prove that lambda(G) less than or equal to Delta(2) + Delta for any graph G of maximum degree Delta. For odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to 2 Delta + 1. For sun-free (SF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to Delta + 2 chi(G) - 2. Finally, we present a polynomial time algorithm to determine lambda(T) for a tree T.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 50 条
  • [1] The L(2,1)-labeling problem on graphs
    Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan
    SIAM J Discrete Math, 2 (309-316):
  • [2] THE L(2,1)-F-LABELING PROBLEM OF GRAPHS
    Chang, Gerard J.
    Lu, Changhong
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1277 - 1285
  • [3] The L(2,1)-labeling on graphs and the frequency assignment problem
    Shao, Zhendong
    Yeh, Roger K.
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 37 - 41
  • [4] On the computational complexity of the L(2,1)-labeling problem for regular graphs
    Fiala, J
    Kratochvíl, J
    THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2005, 3701 : 228 - 236
  • [5] L(2,1)-labeling of Block Graphs
    Panda, B. S.
    Goel, Preeti
    ARS COMBINATORIA, 2015, 119 : 71 - 95
  • [6] L(2,1)-LABELING OF TRAPEZOID GRAPHS
    Paul, S.
    Amanathulla, S. K.
    Pal, M.
    Pal, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1254 - 1263
  • [7] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [8] The L(2,1)-labeling on planar graphs
    Shao, Zhendong
    Yeh, Roger K.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (02) : 222 - 226
  • [9] L(2,1)-labeling of interval graphs
    Paul S.
    Pal M.
    Pal A.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 419 - 432
  • [10] Exact Algorithms for L(2,1)-Labeling of Graphs
    Frédéric Havet
    Martin Klazar
    Jan Kratochvíl
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2011, 59 : 169 - 194