ARAKELOV MOTIVIC COHOMOLOGY I

被引:8
|
作者
Holmstrom, Andreas [1 ]
Scholbach, Jakob [2 ]
机构
[1] Inst Hautes Etudes Sci Le Bois Marie, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
ALGEBRAIC VECTOR-BUNDLES; RIEMANN-ROCH THEOREM; K-THEORY; A(1)-HOMOTOPY;
D O I
10.1090/jag/648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new cohomology theory for schemes of finite type over an arithmetic ring. The main motivation for this Arakelovtheoretic version of motivic cohomology is the conjecture on special values of L-functions and zeta functions formulated by the second author. Taking advantage of the six functors formalism in motivic stable homotopy theory, we establish a number of formal properties, including pullbacks for arbitrary morphisms, pushforwards for projective morphisms between regular schemes, localization sequences, h-descent. We round off the picture with a purity result and a higher arithmetic Riemann-Roch theorem. In a sequel to this paper, we relate Arakelov motivic cohomology to classical constructions such as arithmetic K and Chow groups and the height pairing.
引用
收藏
页码:719 / 754
页数:36
相关论文
共 50 条
  • [31] About Bredon motivic cohomology of a field
    Voineagu, Mircea
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 224 (04)
  • [32] Motivic cohomology of the complement of hyperplane arrangements
    Chatzistamatiou, Andre
    DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 375 - 389
  • [33] AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY, AND THE ADJOINT L-FUNCTION
    Prasanna, Kartik
    Venkatesh, Akshay
    ASTERISQUE, 2021, (428) : 1 - 132
  • [34] Bredon motivic cohomology of the complex numbers
    Heller, Jeremiah
    Voineagu, Mircea
    Ostvaer, Paul Arne
    DOCUMENTA MATHEMATICA, 2024, 29 : 115 - 140
  • [35] Motivic cohomology and infinitesimal group schemes
    Primozic, Eric
    ANNALS OF K-THEORY, 2022, 7 (03) : 441 - 466
  • [36] Motivic cohomology over Dedekind rings
    Thomas Geisser
    Mathematische Zeitschrift, 2004, 248 : 773 - 794
  • [37] Motivic cohomology over Dedekind rings
    Geisser, T
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) : 773 - 794
  • [38] Deninger's conjectures and Weil-Arakelov cohomology
    Flach, Matthias
    Morin, Baptiste
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (02): : 519 - 540
  • [39] MOTIVIC COHOMOLOGY OF FAT POINTS IN MILNOR RANGE
    Park, Jinhyun
    Unver, Sinan
    DOCUMENTA MATHEMATICA, 2018, 23 : 759 - 798
  • [40] Comparison of motivic and simplicial operations in mod-l-motivic and etale cohomology
    Brosnan, Patrick
    Joshua, Roy
    FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 29 - 55