ARAKELOV MOTIVIC COHOMOLOGY I

被引:8
|
作者
Holmstrom, Andreas [1 ]
Scholbach, Jakob [2 ]
机构
[1] Inst Hautes Etudes Sci Le Bois Marie, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
ALGEBRAIC VECTOR-BUNDLES; RIEMANN-ROCH THEOREM; K-THEORY; A(1)-HOMOTOPY;
D O I
10.1090/jag/648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new cohomology theory for schemes of finite type over an arithmetic ring. The main motivation for this Arakelovtheoretic version of motivic cohomology is the conjecture on special values of L-functions and zeta functions formulated by the second author. Taking advantage of the six functors formalism in motivic stable homotopy theory, we establish a number of formal properties, including pullbacks for arbitrary morphisms, pushforwards for projective morphisms between regular schemes, localization sequences, h-descent. We round off the picture with a purity result and a higher arithmetic Riemann-Roch theorem. In a sequel to this paper, we relate Arakelov motivic cohomology to classical constructions such as arithmetic K and Chow groups and the height pairing.
引用
收藏
页码:719 / 754
页数:36
相关论文
共 50 条
  • [21] Reduced power operations in motivic cohomology
    Vladimir Voevodsky
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2003, 98 (1): : 1 - 57
  • [22] Reduced power operations in motivic cohomology
    Voevodsky, V
    PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 98, 2003, (98): : 1 - 57
  • [23] GEOMETRY OF CONFIGURATIONS, POLYLOGARITHMS, AND MOTIVIC COHOMOLOGY
    GONCHAROV, AB
    ADVANCES IN MATHEMATICS, 1995, 114 (02) : 197 - 318
  • [24] On the integral part of A-motivic cohomology
    Gazda, Q.
    COMPOSITIO MATHEMATICA, 2024, 160 (08)
  • [25] From algebraic cobordism to motivic cohomology
    Hoyois, Marc
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 702 : 173 - 226
  • [26] EQUIVARIANT CYCLES AND CANCELLATION FOR MOTIVIC COHOMOLOGY
    Heller, J.
    Voineagu, M.
    Ostvaer, P. A.
    DOCUMENTA MATHEMATICA, 2015, 20 : 269 - 332
  • [27] A note on indecomposable motivic cohomology classes
    Lewis, JD
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 485 : 161 - 172
  • [28] Rost nilpotence and etale motivic cohomology
    Rosenschon, Andreas
    Sawant, Anand
    ADVANCES IN MATHEMATICS, 2018, 330 : 420 - 432
  • [29] ETALE MOTIVIC COHOMOLOGY AND ALGEBRAIC CYCLES
    Rosenschon, Andreas
    Srinivas, V.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2016, 15 (03) : 511 - 537
  • [30] HIGHER CYCLOTOMIC UNITS FOR MOTIVIC COHOMOLOGY
    Myung, Sung
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (03): : 331 - 344