On Construction of Quantum Markov Chains on Cayley trees

被引:3
|
作者
Accardi, Luigi [1 ]
Mukhamedov, Farrukh [2 ]
Souissi, Abdessatar [3 ]
机构
[1] Univ Roma Tor Vergata, Ctr Interdisciplinare Vito Volterra 2, Via Columbia 2, I-00133 Rome, Italy
[2] Int Islamic Univ Malaysia, Fac Sci, Dept Computat & Theoret Sci, Kuantan 25200, Pahang, Malaysia
[3] Carthage Univ, Marsa Preparatory Inst Sci & Tech Studies, Dept Math, Tunis, Tunisia
来源
ALGEBRA, ANALYSIS AND QUANTUM PROBABILITY | 2016年 / 697卷
关键词
BINARY INTERACTIONS; COMPETING TERNARY; GIBBS MEASURES; RANDOM-FIELDS; ISING-MODEL; STATES; PHASE;
D O I
10.1088/1742-6596/697/1/012018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of the present paper is to provide a new construction of quantum Markov chain (QMC) on arbitrary order Cayley tree. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Note that this construction reminds statistical mechanics models with competing interactions on trees. If one considers one dimensional tree, then the provided construction reduces to well-known one, which was studied by the first author. Our construction will allow to investigate phase transition problem in a quantum setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Robustness of quantum Markov chains
    Ibinson, Ben
    Linden, Noah
    Winter, Andreas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) : 289 - 304
  • [32] Decoherence in quantum Markov chains
    Raqueline Azevedo Medeiros Santos
    Renato Portugal
    Marcelo Dutra Fragoso
    Quantum Information Processing, 2014, 13 : 559 - 572
  • [33] Potential theory for quantum Markov states and other quantum Markov chains
    Ameur Dhahri
    Franco Fagnola
    Analysis and Mathematical Physics, 2023, 13
  • [34] Potential theory for quantum Markov states and other quantum Markov chains
    Dhahri, Ameur
    Fagnola, Franco
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [35] Diagonalizability of Quantum Markov States on Trees
    Farrukh Mukhamedov
    Abdessatar Souissi
    Journal of Statistical Physics, 2021, 182
  • [36] Diagonalizability of Quantum Markov States on Trees
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [37] A cutoff phenomenon for quantum Markov chains
    Kastoryano, Michael J.
    Reeb, David
    Wolf, Michael M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [38] Diagonal couplings of quantum Markov chains
    Kuemmerer, Burkhard
    Schwieger, Kay
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (02)
  • [39] Quantum Markov Chains on a Caylay Tree
    Mukhamedov, Farrukh
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2011, 19 : 15 - 22
  • [40] Quantum Approximate Markov Chains are Thermal
    Kato, Kohtaro
    Brandao, Fernando G. S. L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 117 - 149