On Construction of Quantum Markov Chains on Cayley trees

被引:3
|
作者
Accardi, Luigi [1 ]
Mukhamedov, Farrukh [2 ]
Souissi, Abdessatar [3 ]
机构
[1] Univ Roma Tor Vergata, Ctr Interdisciplinare Vito Volterra 2, Via Columbia 2, I-00133 Rome, Italy
[2] Int Islamic Univ Malaysia, Fac Sci, Dept Computat & Theoret Sci, Kuantan 25200, Pahang, Malaysia
[3] Carthage Univ, Marsa Preparatory Inst Sci & Tech Studies, Dept Math, Tunis, Tunisia
关键词
BINARY INTERACTIONS; COMPETING TERNARY; GIBBS MEASURES; RANDOM-FIELDS; ISING-MODEL; STATES; PHASE;
D O I
10.1088/1742-6596/697/1/012018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of the present paper is to provide a new construction of quantum Markov chain (QMC) on arbitrary order Cayley tree. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Note that this construction reminds statistical mechanics models with competing interactions on trees. If one considers one dimensional tree, then the provided construction reduces to well-known one, which was studied by the first author. Our construction will allow to investigate phase transition problem in a quantum setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum Markov chains
    Gudder, Stanley
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [22] The Asymptotic Behavior for Markov Chains in a Finite i.i.d Random Environment Indexed by Cayley Trees
    Huang, Huilin
    FILOMAT, 2017, 31 (02) : 273 - 283
  • [23] On Quantum Markov Chains on Cayley Tree II: Phase Transitions for the Associated Chain with XY-Model on the Cayley Tree of Order Three
    Luigi Accardi
    Farrukh Mukhamedov
    Mansoor Saburov
    Annales Henri Poincaré, 2011, 12 : 1109 - 1144
  • [24] On Quantum Markov Chains on Cayley Tree II: Phase Transitions for the Associated Chain with XY-Model on the Cayley Tree of Order Three
    Accardi, Luigi
    Mukhamedov, Farrukh
    Saburov, Mansoor
    ANNALES HENRI POINCARE, 2011, 12 (06): : 1109 - 1144
  • [25] Concentration of Markov chains indexed by trees
    Shriver, Christopher
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1701 - 1711
  • [26] MARKOV-CHAINS INDEXED BY TREES
    BENJAMINI, I
    PERES, Y
    ANNALS OF PROBABILITY, 1994, 22 (01): : 219 - 243
  • [27] DECOMPOSITION AND CONSTRUCTION OF MARKOV CHAINS
    LAMB, CW
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03): : 213 - &
  • [28] Disjoint decomposition sampling circuits of Markov chains and in Cayley graphs
    Martin, R
    Randall, D
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (03): : 411 - 448
  • [29] Robustness of Quantum Markov Chains
    Ben Ibinson
    Noah Linden
    Andreas Winter
    Communications in Mathematical Physics, 2008, 277 : 289 - 304
  • [30] Decoherence in quantum Markov chains
    Medeiros Santos, Raqueline Azevedo
    Portugal, Renato
    Fragoso, Marcelo Dutra
    QUANTUM INFORMATION PROCESSING, 2014, 13 (02) : 559 - 572