Solitons in one-dimensional mechanical linkage

被引:5
|
作者
Sato, Koji [1 ]
Tanaka, Ryokichi [2 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
D O I
10.1103/PhysRevE.98.013001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It has been observed that certain classical chains admit topologically protected zero-energy modes that are localized on the boundaries. The static features of such localized modes are captured by linearized equations of motion, but the dynamical features are governed by its nonlinearity. We study quasiperiodic solutions of nonlinear equations of motion of one-dimensional classical chains. Such quasi-periodic solutions correspond to periodic trajectories in the configuration space of the discrete systems, which allows us to define solitons without relying on a continuum theory. Furthermore, we study the dynamics of solitons in inhomogeneous systems by connecting two chains with distinct parameter sets, where transmission or reflection of solitons occurs at the boundary of the two chains.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Phonons and solitons in one-dimensional Mott insulators
    Chang, CM
    Neto, AHC
    Bishop, AR
    PHYSICAL REVIEW B, 2001, 64 (11):
  • [32] Properties of one-dimensional anharmonic lattice solitons
    Szeftel, J
    Laurent-Gengoux, P
    Ilisca, E
    Hebbache, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 288 (1-4) : 225 - 243
  • [33] Theory of one-dimensional quantum gap solitons
    Cheng, Z
    Kurizki, G
    PHYSICAL REVIEW A, 1996, 54 (04): : 3576 - 3591
  • [34] Traveling solitons in one-dimensional quartic lattices
    Mahan, G. D.
    PHYSICAL REVIEW B, 2006, 74 (09):
  • [35] ONE-DIMENSIONAL VLASOV SIMULATIONS OF LANGMUIR SOLITONS
    LIN, CH
    CHAO, JK
    CHENG, CZ
    PHYSICS OF PLASMAS, 1995, 2 (11) : 4195 - 4203
  • [36] SOLITONS IN A ONE-DIMENSIONAL MAGNET WITH AN EASY PLANE
    MIKESKA, HJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (01): : L29 - L32
  • [37] ONE-DIMENSIONAL SOLITONS IN A THIN ROTATING ATMOSPHERE
    BAZDENKOV, SV
    MOROZOV, NN
    DOKLADY AKADEMII NAUK SSSR, 1984, 279 (03): : 559 - 561
  • [38] Solitons in One-Dimensional Lattices with a Flat Band
    Bercioux, Dario
    Dutta, Omjyoti
    Rico, Enrique
    ANNALEN DER PHYSIK, 2017, 529 (09)
  • [39] Moving solitons in a one-dimensional fermionic superfluid
    Efimkin, Dmitry K.
    Galitski, Victor
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [40] SOLITONS IN A ONE-DIMENSIONAL DEGENERATE HUBBARD-MODEL
    LIPINSKI, S
    ACTA PHYSICA POLONICA A, 1991, 80 (01) : 117 - 128