Solitons in one-dimensional mechanical linkage

被引:5
|
作者
Sato, Koji [1 ]
Tanaka, Ryokichi [2 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
D O I
10.1103/PhysRevE.98.013001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It has been observed that certain classical chains admit topologically protected zero-energy modes that are localized on the boundaries. The static features of such localized modes are captured by linearized equations of motion, but the dynamical features are governed by its nonlinearity. We study quasiperiodic solutions of nonlinear equations of motion of one-dimensional classical chains. Such quasi-periodic solutions correspond to periodic trajectories in the configuration space of the discrete systems, which allows us to define solitons without relying on a continuum theory. Furthermore, we study the dynamics of solitons in inhomogeneous systems by connecting two chains with distinct parameter sets, where transmission or reflection of solitons occurs at the boundary of the two chains.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] SOLITONS IN ONE-DIMENSIONAL MAGNETS
    MIKESKA, HJ
    JOURNAL OF APPLIED PHYSICS, 1981, 52 (03) : 1950 - 1955
  • [2] Solitons in one-dimensional ferromagnets
    Soviet Scientific Reviews, Section A: Physics Reviews, 1992, 16 (pt 3):
  • [3] SOLITONS IN ONE-DIMENSIONAL HELIMAGNETS
    SASAKI, K
    TSUZUKI, T
    PHYSICA B & C, 1981, 107 (1-3): : 97 - 98
  • [4] SOLITONS IN ONE-DIMENSIONAL HELIMAGNETS
    SASAKI, K
    PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (06): : 1787 - 1797
  • [5] Solitons in one-dimensional nonlinear lattice
    Chen, Weizhong
    Wuli Xuebao/Acta Physica Sinica, 1993, 42 (10): : 1567 - 1572
  • [6] Solitons in one-dimensional photonic crystals
    Mayteevarunyoo, Thawatchai
    Malomed, Boris A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (11) : 1854 - 1863
  • [7] SOLITONS IN ONE-DIMENSIONAL MOLECULAR CHAINS
    DAVYDOV, AS
    KISLUKHA, NI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1976, 71 (09): : 1090 - 1098
  • [8] NUMERICAL SIMULATIONS OF ONE-DIMENSIONAL SOLITONS
    PEREIRA, NR
    SUDAN, RN
    DENAVIT, J
    PHYSICS OF FLUIDS, 1977, 20 (02) : 271 - 281
  • [9] Nonparaxial one-dimensional spatial solitons
    Blair, S
    CHAOS, 2000, 10 (03) : 570 - 583
  • [10] One-dimensional quadratic walking solitons
    Schiek, R
    Baek, Y
    Stegeman, GI
    Sohler, W
    OPTICS LETTERS, 1999, 24 (02) : 83 - 85