k-Point semidefinite programming bounds for equiangular lines

被引:4
|
作者
de Laat, David [1 ]
Machado, Fabricio Caluza [2 ]
de Oliveira Filho, Fernando Mario [1 ]
Vallentin, Frank [3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
基金
巴西圣保罗研究基金会;
关键词
52C17; 90C22; SETS;
D O I
10.1007/s10107-021-01638-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a hierarchy of k-point bounds extending the Delsarte-Goethals-Seidel linear programming 2-point bound and the Bachoc-Vallentin semidefinite programming 3-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute 4, 5, and 6-point bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
引用
收藏
页码:533 / 567
页数:35
相关论文
共 50 条
  • [31] Upper bounds for s-distance sets and equiangular lines
    Glazyrin, Alexey
    Yu, Wei-Hsuan
    ADVANCES IN MATHEMATICS, 2018, 330 : 810 - 833
  • [32] Faster geometric k-point MST approximation
    Eppstein, D
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 231 - 240
  • [33] On k-point configuration sets with nonempty interior
    Greenleaf, Allan
    Iosevich, Alex
    Taylor, Krystal
    MATHEMATIKA, 2022, 68 (01) : 163 - 190
  • [34] RADIX-K FFTS USING K-POINT CONVOLUTIONS
    STASINSKI, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (04) : 743 - 750
  • [35] Volumes Spanned by k-Point Configurations in Rd
    Galo, Belmiro
    McDonald, Alex
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [36] Transit sets of k-point crossover operators
    Changat, Manoj
    Narasimha-Shenoi, Prasanth G.
    Nezhad, Ferdoos Hossein
    Kovse, Matjaz
    Mohandas, Shilpa
    Ramachandran, Abisha
    Stadler, Peter F.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 519 - 533
  • [37] Certified Roundoff Error Bounds Using Semidefinite Programming
    Magron, Victor
    Constantinides, George
    Donaldson, Alastair
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [38] NEW AND UPDATED SEMIDEFINITE PROGRAMMING BOUNDS FOR SUBSPACE CODES
    Heinlein, Daniel
    Ihringer, Ferdinand
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 613 - 630
  • [39] RIGOROUS ERROR BOUNDS FOR THE OPTIMAL VALUE IN SEMIDEFINITE PROGRAMMING
    Jansson, Christian
    Chaykin, Denis
    Keil, Christian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 180 - 200
  • [40] Semidefinite programming and eigenvalue bounds for the graph partition problem
    van Dam, Edwin R.
    Sotirov, Renata
    MATHEMATICAL PROGRAMMING, 2015, 151 (02) : 379 - 404