k-Point semidefinite programming bounds for equiangular lines

被引:4
|
作者
de Laat, David [1 ]
Machado, Fabricio Caluza [2 ]
de Oliveira Filho, Fernando Mario [1 ]
Vallentin, Frank [3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
基金
巴西圣保罗研究基金会;
关键词
52C17; 90C22; SETS;
D O I
10.1007/s10107-021-01638-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a hierarchy of k-point bounds extending the Delsarte-Goethals-Seidel linear programming 2-point bound and the Bachoc-Vallentin semidefinite programming 3-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute 4, 5, and 6-point bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
引用
收藏
页码:533 / 567
页数:35
相关论文
共 50 条
  • [21] Introducing k-point parallelism into VASP
    Maniopoulou, Asimina
    Davidson, Erlend R. M.
    Grau-Crespo, Ricardo
    Walsh, Aron
    Bush, Ian J.
    Catlow, C. Richard A.
    Woodley, Scott M.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (08) : 1696 - 1701
  • [22] NOTE ON K-POINT SEPARATION MEASUREMENT
    TAKAHASHI, R
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (01) : 177 - 179
  • [23] Bounds on localizable information via semidefinite programming
    Synak-Radtke, B
    Horodecki, K
    Horodecki, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [24] Semidefinite programming bounds for the average kissing number
    Maria Dostert
    Alexander Kolpakov
    Fernando Mário de Oliveira Filho
    Israel Journal of Mathematics, 2022, 247 : 635 - 659
  • [25] Option pricing bounds via semidefinite programming
    Primbs, James A.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1266 - 1271
  • [26] BOUNDS FOR PROJECTIVE CODES FROM SEMIDEFINITE PROGRAMMING
    Bachoc, Christine
    Passuello, Alberto
    Vallentin, Frank
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (02) : 127 - 145
  • [27] Lower Bounds on the Size of Semidefinite Programming Relaxations
    Lee, James R.
    Raghavendra, Prasad
    Steurer, David
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 567 - 576
  • [28] ERROR BOUNDS AND SINGULARITY DEGREE IN SEMIDEFINITE PROGRAMMING
    Sremac, Stefan
    Woerdeman, Hugo J.
    Wolkowicz, Henry
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 812 - 836
  • [29] Semidefinite Programming Converse Bounds for Quantum Communication
    Wang, Xin
    Fang, Kun
    Duan, Runyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2583 - 2592
  • [30] Interior point trajectories in semidefinite programming
    Goldfarb, D
    Scheinberg, K
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (04) : 871 - 886