Parameter estimation in rational models of molecular biological systems

被引:9
|
作者
Wu, Fang-Xiang [1 ]
Mu, Lei [1 ]
机构
[1] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
关键词
Parameter estimation; nonlinear optimization; molecular biological systems; rational model;
D O I
10.1109/IEMBS.2009.5333508
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Based on statistical thermodynamics or Michaelis-Menten kinetics, molecular biological systems can be modeled by a system of nonlinear differential equations. The nonlinearity in the model stems from rational reaction rates whose numerator and denominator are linear in parameters. It is a nonlinear problem to estimate the parameters in such rational models of molecular biological systems. In principle, any nonlinear optimization methods such as Newton-Gauss method and its variants can be used to estimate parameters in the rational models. However, these methods may converge to a local minimum and be sensitive to the initial values. In this study, we propose a new method to estimate the parameters in the rational models of molecular biological systems. In the proposed method, the cost function in all parameters is first reduced to a cost function only in the parameters in the denominator by a separable theorem. Then the parameters in the denominator are estimated by minimizing this cost function using our proposed new iteration method. Finally, the parameters in the numerator are estimated by a well defined linear least squares formula. A simple gene regulatory system is used as an example to illustrate the performance of the proposed method. Simulation results show that the proposed method performs better than the general nonlinear optimization methods in terms of the running time, robustness (insensitivity) to the initial values, and the accuracy of estimates.
引用
收藏
页码:3263 / 3266
页数:4
相关论文
共 50 条
  • [31] A distributed approach for parameter estimation in Systems Biology models
    Mosca, E.
    Merelli, I.
    Alfieri, R.
    Milanesi, L.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 165 - 168
  • [32] Bayesian parameter estimation for dynamical models in systems biology
    Linden, Nathaniel J.
    Kramer, Boris
    Rangamani, Padmini
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [33] Structure Identification and Parameter Estimation of Biological S-systems
    Liu, Li-Zhi
    Wu, Fang-Xiang
    Han, Li-Li
    Zhang, W. J.
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 329 - 334
  • [34] Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
    Maria Rodriguez-Fernandez
    Jose A Egea
    Julio R Banga
    BMC Bioinformatics, 7
  • [35] Determine Measurement Set for Parameter Estimation in Biological Systems Modelling
    Yue, Hong
    Jia, Jianfang
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7457 - 7462
  • [36] Hierarchy cuckoo search algorithm for parameter estimation in biological systems
    Rakhshani, Hojjat
    Dehghanian, Effat
    Rahati, Amin
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 159 : 97 - 107
  • [37] Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
    Rodriguez-Fernandez, Maria
    Egea, Jose A.
    Banga, Julio R.
    BMC BIOINFORMATICS, 2006, 7 (1)
  • [38] Parameter estimation in complicated rational functions
    Dimitrov, SD
    Kamenski, DI
    COMPUTERS & CHEMISTRY, 1996, 20 (03): : 331 - 337
  • [39] Parameter estimation in complicated rational functions
    Dimitrov, S.D.
    Kamenski, D.I.
    Computers and Chemistry, 1996, 20 (03): : 331 - 337
  • [40] Accelerated Gradient Descent Estimation for Rational Models by Using Volterra Series: Structure Identification and Parameter Estimation
    Chen, Jing
    Ding, Feng
    Hu, Manfeng
    Zhu, Quanmin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1497 - 1501