Parameter estimation in rational models of molecular biological systems

被引:9
|
作者
Wu, Fang-Xiang [1 ]
Mu, Lei [1 ]
机构
[1] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
关键词
Parameter estimation; nonlinear optimization; molecular biological systems; rational model;
D O I
10.1109/IEMBS.2009.5333508
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Based on statistical thermodynamics or Michaelis-Menten kinetics, molecular biological systems can be modeled by a system of nonlinear differential equations. The nonlinearity in the model stems from rational reaction rates whose numerator and denominator are linear in parameters. It is a nonlinear problem to estimate the parameters in such rational models of molecular biological systems. In principle, any nonlinear optimization methods such as Newton-Gauss method and its variants can be used to estimate parameters in the rational models. However, these methods may converge to a local minimum and be sensitive to the initial values. In this study, we propose a new method to estimate the parameters in the rational models of molecular biological systems. In the proposed method, the cost function in all parameters is first reduced to a cost function only in the parameters in the denominator by a separable theorem. Then the parameters in the denominator are estimated by minimizing this cost function using our proposed new iteration method. Finally, the parameters in the numerator are estimated by a well defined linear least squares formula. A simple gene regulatory system is used as an example to illustrate the performance of the proposed method. Simulation results show that the proposed method performs better than the general nonlinear optimization methods in terms of the running time, robustness (insensitivity) to the initial values, and the accuracy of estimates.
引用
收藏
页码:3263 / 3266
页数:4
相关论文
共 50 条
  • [21] Separable Parameter Estimation Method for Nonlinear Biological Systems
    Wu, Fang-Xiang
    Mu, Lei
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 614 - 617
  • [22] AN APPROACH OF PARAMETER-ESTIMATION OF BIOLOGICAL-SYSTEMS
    NATH, NG
    SAN, NYN
    INSTRUMENTATION - BIOMEDICAL INSTRUMENTATION, 1989, : 105 - 123
  • [23] The Monte Carlo EM method for the parameter estimation of biological models
    Angius, Alessio
    Horvath, Andras
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 275 : 23 - 36
  • [24] Critical Assessment of Parameter Estimation Methods in Models of Biological Oscillators
    Pitt, Jake Alan
    Gomoescu, Lucian
    Pantelides, Constantinos C.
    Chachuat, Benoit
    Banga, Julio R.
    IFAC PAPERSONLINE, 2018, 51 (19): : 72 - 75
  • [25] Parameter estimation for reaction-diffusion models of biological invasions
    Soubeyrand, Samuel
    Roques, Lionel
    POPULATION ECOLOGY, 2014, 56 (02) : 427 - 434
  • [26] When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models
    Fernandez Slezak, Diego
    Suarez, Cecilia
    Cecchi, Guillermo A.
    Marshall, Guillermo
    Stolovitzky, Gustavo
    PLOS ONE, 2010, 5 (10):
  • [27] Bayesian parameter estimation for stochastic models of biological cell migration
    Dieterich, Peter
    Preuss, Roland
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2013, 1553 : 16 - 22
  • [28] On linear models and parameter identifiability in experimental biological systems
    Lambertoh, Timothy O.
    Condon, Nicholas D.
    Stow, Jennifer L.
    Hamilton, Nicholas A.
    JOURNAL OF THEORETICAL BIOLOGY, 2014, 358 : 102 - 121
  • [29] PARAMETER-ESTIMATION OF MACROECONOMIC SYSTEMS UNDER RATIONAL-EXPECTATIONS
    SHIVA, R
    LEE, KY
    PARKER, JA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (06) : 1121 - 1137
  • [30] Parameter estimation in biochemical systems models with alternating regression
    Chou, I-Chun
    Martens, Harald
    Voit, Eberhard O.
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2006, 3