Complete sets of commuting observables of Greenberger-Horne-Zeilinger states

被引:4
|
作者
Ruan, MQ [1 ]
Zeng, JY
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.70.052113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Complete sets of commuting observables (CSCOs) of the form Sigma(N)=Pi(i=1)(N)sigma(ialphai) (alpha(i)=x,y,z) for an N-qubit system are extracted by a simple graphic approach. One can construct 2x3(N) sets of operators, each set consisting of K-N commuting Sigma(N), K-N=2(N-1)+1 for even N, and 2(N-1) for odd N. Any N functional-independent operators among the K-N operators may be adopted as a CSCO, whose simultaneous eigenstates (SEs) span an orthonormal basis of N-qubit space. These SEs have reduced density matrix of rank 2 and can be reduced to the Greenberger-Horne-Zeilinger (GHZ) state form of Eq. (2) in suitable representations. The all-versus-nothing demolition of the elements of reality holds for each basis of the form of Eq. (2) for N-qubit (Ngreater than or equal to3) systems. Sigma(N) may be considered as the infinitesimal operator of rotational operator R(alpha(1),alpha(2),...alpha(N))=Pi(i=1)(N)exp[-ipisigma(ialphai)/2] , whose eigenvalue (signature) r=e(-ipialpha), or signature exponent alpha, may be equivalently used for characterizing each basis.
引用
收藏
页码:052113 / 1
页数:5
相关论文
共 50 条
  • [1] NMR Greenberger-Horne-Zeilinger states
    Laflamme, R
    Knill, E
    Zurek, WH
    Catasti, P
    Mariappan, SVS
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1941 - 1947
  • [2] Optimal Verification of Greenberger-Horne-Zeilinger States
    Li, Zihao
    Han, Yun-Guang
    Zhu, Huangjun
    PHYSICAL REVIEW APPLIED, 2020, 13 (05)
  • [3] NMR Greenberger-Horne-Zeilinger states - Discussion
    Marcer, P
    Zurek, WH
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1947 - 1948
  • [4] Multiparty multilevel Greenberger-Horne-Zeilinger states
    Cabello, A
    PHYSICAL REVIEW A, 2001, 63 (02): : 022104 - 022101
  • [5] Generating Greenberger-Horne-Zeilinger states with squeezing and postselection
    Alexander, Byron
    Bollinger, John J.
    Uys, Hermann
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [6] Preparing Greenberger-Horne-Zeilinger States by Lypunov Control
    D. W. Zhang
    J. H. Teng
    S. J. Mu
    Hong Li
    International Journal of Theoretical Physics, 2021, 60 : 1539 - 1549
  • [7] Small sets of genuinely nonlocal Greenberger-Horne-Zeilinger states in multipartite systems
    Xiong, Zong-Xing
    Zhang, Yongli
    Li, Mao-Sheng
    Li, Lvzhou
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [8] Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states
    Parashar, Preeti
    Rana, Swapan
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [9] Optimal detection of entanglement in Greenberger-Horne-Zeilinger states
    Kay, Alastair
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [10] Sewing Greenberger-Horne-Zeilinger states with a quantum zipper
    Wang, Da-Wei
    FOUNDATIONS OF QUANTUM THEORY, 2019, 197 : 109 - 112