(ChinaVis 2019) uncertainty visualization in stratigraphic correlation based on multi-source data fusion

被引:7
|
作者
Liu, Yuhua [1 ]
Guo, Zhiyong [1 ]
Zhang, Xinlong [1 ]
Zhang, Rumin [1 ]
Zhou, Zhiguang [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Stratigraphic correlation; Synthetic seismogram; Horizon tracking; Visual analysis; WELL LOGS;
D O I
10.1007/s12650-019-00579-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As a most important step in geological interpretation, stratigraphic correlation plays important roles in reservoir estimation and geologic modeling. A variety of datasets are used for stratigraphic correlation, such as well-logging data and seismic data, which are collected by different kinds of sensors. However, much uncertainty will be generated in the traditional course of stratigraphic correlation, because the complex underground geological structures cannot be comprehensively depicted by single dataset. Therefore, in this paper, we propose a visualization system to present and reduce the uncertainty in stratigraphic correlation based on the fusion analysis of multi-source datasets. First, a synthetic seismogram is modeled for each drilling well and a traditional time-depth conversion is conducted to match the seismic data and logging data. Then, an uncertainty model is proposed to quantify the depth difference between seismic horizons and stratigraphic structures extracted from different datasets. Furthermore, a set of visual designs are integrated into an uncertainty visualization system, enabling users to conduct intuitive uncertainty exploration and supervised optimization of stratigraphic correlation. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in analyzing the uncertainty of stratigraphic correlation and refining the results of geological interpretation.
引用
收藏
页码:1021 / 1038
页数:18
相关论文
共 50 条
  • [31] A Hybrid Recommendation Model Based on Fusion of Multi-Source Heterogeneous Data
    Ji Z.-Y.
    Pi H.-Y.
    Yao W.-N.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (01): : 126 - 132
  • [32] Multi-source data fusion for intelligent diagnosis based on generalized representation
    Peng, Weimin
    Chen, Aihong
    Chen, Jing
    Xu, Haitao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [33] A Supplier Group Recognition Framework Based on Multi-source Data Fusion
    Ma, Xinqiang
    Shen, Likai
    Zhong, Baoquan
    Huang, Yi
    Liu, Yong
    Wu, Maonian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3804 - 3809
  • [34] Factor Graph based Multi-source Data Fusion for Wireless Localization
    Zhao, Wanlong
    Meng, Weixiao
    Chi, Yonggang
    Han, Shuai
    2016 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 2016,
  • [35] Multi-Source Traffic Data Fusion Method Based on Regulation and Reliability
    Wu, Xinhong
    Jin, Hai
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS, PROCEEDINGS, 2009, : 715 - 718
  • [36] The Mining of Urban Hotspots Based on Multi-Source Location Data Fusion
    Cai, Li
    Wang, Haoyu
    Sha, Cong
    Jiang, Fang
    Zhang, Yihan
    Zhou, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 2061 - 2077
  • [37] Multi-source Heterogeneous Data Fusion Algorithm Based on Federated Learning
    Zhou, Jincheng
    Lei, Yang
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 46 - 60
  • [38] Data fusion of multi-source imagery based on linear features registration
    Al-Ruzouq, Rami Issa
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (19) : 5011 - 5021
  • [39] Identification of Edible Oil Based on Multi-source Spectra Data Fusion
    Yu Yaru
    Tu Bing
    Wang Jie
    Wu Shuang
    Zheng Xiao
    He Dongping
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY (FMSMT 2017), 2017, 130 : 903 - 908
  • [40] Estimation and Mapping of Soil Properties Based on Multi-Source Data Fusion
    Mouazen, Abdul Mounem
    Shi, Zhou
    REMOTE SENSING, 2021, 13 (05) : 1 - 4