(ChinaVis 2019) uncertainty visualization in stratigraphic correlation based on multi-source data fusion

被引:7
|
作者
Liu, Yuhua [1 ]
Guo, Zhiyong [1 ]
Zhang, Xinlong [1 ]
Zhang, Rumin [1 ]
Zhou, Zhiguang [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Stratigraphic correlation; Synthetic seismogram; Horizon tracking; Visual analysis; WELL LOGS;
D O I
10.1007/s12650-019-00579-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As a most important step in geological interpretation, stratigraphic correlation plays important roles in reservoir estimation and geologic modeling. A variety of datasets are used for stratigraphic correlation, such as well-logging data and seismic data, which are collected by different kinds of sensors. However, much uncertainty will be generated in the traditional course of stratigraphic correlation, because the complex underground geological structures cannot be comprehensively depicted by single dataset. Therefore, in this paper, we propose a visualization system to present and reduce the uncertainty in stratigraphic correlation based on the fusion analysis of multi-source datasets. First, a synthetic seismogram is modeled for each drilling well and a traditional time-depth conversion is conducted to match the seismic data and logging data. Then, an uncertainty model is proposed to quantify the depth difference between seismic horizons and stratigraphic structures extracted from different datasets. Furthermore, a set of visual designs are integrated into an uncertainty visualization system, enabling users to conduct intuitive uncertainty exploration and supervised optimization of stratigraphic correlation. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in analyzing the uncertainty of stratigraphic correlation and refining the results of geological interpretation.
引用
收藏
页码:1021 / 1038
页数:18
相关论文
共 50 条
  • [21] Multi-source data fusion study in scientometrics
    Xu, Hai-Yun
    Yue, Zeng-Hui
    Wang, Chao
    Dong, Kun
    Pang, Hong-Shen
    Han, Zhengbiao
    SCIENTOMETRICS, 2017, 111 (02) : 773 - 792
  • [22] Three-dimensional visualization simulation assessment system based on multi-source data fusion for the Wenchuan earthquake
    Fan, Xiangtao
    Du, Xiaoping
    Tan, Jian
    Zhu, Junjie
    Journal of Applied Remote Sensing, 2009, 3 (01):
  • [23] Three-dimensional visualization simulation assessment system based on multi-source data fusion for the Wenchuan earthquake
    Fan, Xiangtao
    Du, Xiaoping
    Tan, Jian
    Zhu, Junjie
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [24] Tourism Information Data Processing Method Based on Multi-Source Data Fusion
    Li, YaoGuang
    Gan, HeChi
    JOURNAL OF SENSORS, 2021, 2021
  • [25] Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion
    Tang, Yongchuan
    Chen, Yong
    Zhou, Deyun
    ENTROPY, 2022, 24 (11)
  • [26] Intelligent Visualization System for Big Multi-source Medical Data Based on Data Lake
    Ren, Peng
    Mao, Ziyun
    Li, Shuaibo
    Xiao, Yang
    Ke, Yating
    Yao, Lanyu
    Lan, Hao
    Li, Xin
    Sheng, Ming
    Zhang, Yong
    WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021), 2021, 12999 : 706 - 717
  • [27] Multi-source heterogeneous data fusion model based on fuzzy mathematics
    Zeng, Qiao
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2023, 23 (04) : 2165 - 2178
  • [28] Multi-source Data Fusion Approach Based on Improved Evidence Theory
    Wang, Yongwei
    Yuan, Kaiguo
    Liu, Yunan
    Jia, Hongyong
    Qiu, Wei
    JOURNAL OF COMPUTERS, 2013, 8 (11) : 2864 - 2872
  • [29] Knowledge Graph Construction in Logistics Based on Multi-source Data Fusion
    Gao, Xinyu
    Zhang, Li
    Zhang, Wenping
    Chen, Haoxuan
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 792 - 802
  • [30] Research on Multi-source Data Fusion Method Based on Bayesian Estimation
    Sun, Tao
    Yu, Min
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 321 - 324