Bounds for the Kirchhoff Index of Regular Graphs via the Spectra of Their Random Walks

被引:27
|
作者
Luis Palacios, Jose [1 ]
Miguel Renom, Jose [1 ]
机构
[1] Univ Simon Bolivar, Dept Comp Cient & Estadist, Caracas, Venezuela
关键词
hitting times; fundamental matrix; Kemeny's constant; RESISTANCE DISTANCE;
D O I
10.1002/qua.22323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using probabilistic tools, we give tight upper and lower bounds for the Kirchhoff index of any d-regular N-vertex graph in terms of d, N, and the spectral gap of the transition probability matrix associated to the random walk on the graph. We then use bounds of the spectral gap of more specialized graphs, available in the literature, in order to obtain upper bounds for the Kirchhoff index of these specialized graphs. As a byproduct, we obtain a closed-form formula for the Kirchhoff index of the d-dimensional cube in terms of the first inverse moment of a positive binomial variable. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1637-1641, 2010
引用
收藏
页码:1637 / 1641
页数:5
相关论文
共 50 条
  • [1] On the Kirchhoff Index of Regular Graphs
    Luis Palacios, Jose
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (07) : 1307 - 1309
  • [2] Tight Bounds for Coalescing-Branching Random Walks on Regular Graphs
    Berenbrink, Petra
    Giakkoupis, George
    Kling, Peter
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1715 - 1733
  • [3] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [4] Some Bounds for the Kirchhoff Index of Graphs
    Yang, Yujun
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Bounds for the Kirchhoff Index of Bipartite Graphs
    Yang, Yujun
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Improved bounds for Kirchhoff index of graphs
    Altindag, S. B. Bozkurt
    Matejic, M.
    Milovanovic, I.
    Milovanovic, E.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, : 243 - 251
  • [7] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308
  • [8] CUTOFF PHENOMENA FOR RANDOM WALKS ON RANDOM REGULAR GRAPHS
    Lubetzky, Eyal
    Sly, Allan
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (03) : 475 - 510
  • [9] VIRAL PROCESSES BY RANDOM WALKS ON RANDOM REGULAR GRAPHS
    Abdullah, Mohammed
    Cooper, Colin
    Draief, Moez
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 477 - 522
  • [10] Revisiting Lower Bounds for the Kirchhoff Index of Graphs
    Palacios, Jose Luis
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (02) : 395 - 403