GCV for Tikhonov regularization via global Golub-Kahan decomposition

被引:40
|
作者
Fenu, Caterina [1 ]
Reichel, Lothar [2 ]
Rodriguez, Giuseppe [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
generalized cross validation; Tikhonov regularization; parameter estimation; global Golub-Kahan decomposition; GENERALIZED CROSS-VALIDATION; PARAMETER CHOICE RULES; MATRIX; TRACE; MOMENTS;
D O I
10.1002/nla.2034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized cross validation is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for large-scale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:467 / 484
页数:18
相关论文
共 50 条
  • [1] Error estimates for Golub-Kahan bidiagonalization with Tikhonov regularization for ill-posed operator equations
    Alqahtani, A.
    Ramlau, R.
    Reichel, L.
    INVERSE PROBLEMS, 2023, 39 (02)
  • [2] The global Golub-Kahan method and Gauss quadrature for tensor function approximation
    Bentbib, A. H.
    El Ghomari, M.
    Jbilou, K.
    Reichel, L.
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 5 - 34
  • [3] The global Golub-Kahan method and Gauss quadrature for tensor function approximation
    A. H. Bentbib
    M. El Ghomari
    K. Jbilou
    L. Reichel
    Numerical Algorithms, 2023, 92 : 5 - 34
  • [4] GENERALIZED GOLUB-KAHAN BIDIAGONALIZATION AND STOPPING CRITERIA
    Arioli, M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 571 - 592
  • [5] Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems
    Bentbib, A. H.
    El Guide, M.
    Jbilou, K.
    Reichel, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 322 : 46 - 56
  • [6] Tensor Golub-Kahan method based on Einstein product
    El Hachimi, A.
    Jbilou, K.
    Hached, M.
    Ratnani, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [7] Efficient generalized Golub-Kahan based methods for dynamic inverse problems
    Chung, Julianne
    Saibaba, Arvind K.
    Brown, Matthew
    Westman, Erik
    INVERSE PROBLEMS, 2018, 34 (02)
  • [8] ON TENSOR GMRES AND GOLUB-KAHAN METHODS VIA THE T-PRODUCT FOR COLOR IMAGE PROCESSING
    El Guide, Mohamed
    El Ichi, Alaa
    Jbilou, Khalide
    Sadaka, Rachid
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 524 - 543
  • [9] Golub-Kahan bidiagonalization for ill-conditioned tensor equations with applications
    Beik, Fatemeh P. A.
    Jbilou, Khalide
    Najafi-Kalyani, Mehdi
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1535 - 1563
  • [10] GCV for Tikhonov regularization by partial SVD
    Fenu, Caterina
    Reichel, Lothar
    Rodriguez, Giuseppe
    Sadok, Hassane
    BIT NUMERICAL MATHEMATICS, 2017, 57 (04) : 1019 - 1039