GENERALIZED GOLUB-KAHAN BIDIAGONALIZATION AND STOPPING CRITERIA

被引:23
|
作者
Arioli, M. [1 ]
机构
[1] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Golub-Kahan bidiagonalization; sparse matrices; stopping criteria; augmented systems; INDEFINITE SYSTEMS; ERROR ESTIMATION; STABILITY; ALGORITHM; MATRICES; LSQR;
D O I
10.1137/120866543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Golub-Kahan bidiagonalization algorithm has been widely used in solving least-squares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub-Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes and Stiefel for the conjugate gradient method and later developed by Golub, Meurant, and Strakos. This estimator gives a lower bound for the error, and can be used as a stopping criterion for the whole process. We also propose an upper bound of the error based on Gauss-Radau quadrature. Finally, we show how we can transform augmented systems arising from the mixed finite-element approximation of partial differential equations in order to achieve a convergence rate independent of the finite dimensional problem size.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 50 条
  • [1] BAND GENERALIZATION OF THE GOLUB-KAHAN BIDIAGONALIZATION, GENERALIZED JACOBI MATRICES, AND THE CORE PROBLEM
    Hnetynkova, Iveta
    Plesinger, Martin
    Strakos, Zdenek
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 417 - 434
  • [2] Golub-Kahan bidiagonalization for ill-conditioned tensor equations with applications
    Beik, Fatemeh P. A.
    Jbilou, Khalide
    Najafi-Kalyani, Mehdi
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1535 - 1563
  • [3] Inexact inner-outer Golub-Kahan bidiagonalization method: A relaxation strategy
    Darrigrand, Vincent
    Dumitrasc, Andrei
    Kruse, Carola
    Ruede, Ulrich
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (05)
  • [4] The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data
    Iveta Hnětynková
    Martin Plešinger
    Zdeněk Strakoš
    BIT Numerical Mathematics, 2009, 49 : 669 - 696
  • [5] The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data
    Hnetynkova, Iveta
    Plesinger, Martin
    Strakos, Zdenek
    BIT NUMERICAL MATHEMATICS, 2009, 49 (04) : 669 - 696
  • [6] Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems
    Bentbib, A. H.
    El Guide, M.
    Jbilou, K.
    Reichel, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 322 : 46 - 56
  • [7] Parallel solution of saddle point systems with nested iterative solvers based on the Golub-Kahan Bidiagonalization
    Kruse, Carola
    Sosonkina, Masha
    Arioli, Mario
    Tardieu, Nicolas
    Ruede, Ulrich
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (11):
  • [8] Error estimates for Golub-Kahan bidiagonalization with Tikhonov regularization for ill-posed operator equations
    Alqahtani, A.
    Ramlau, R.
    Reichel, L.
    INVERSE PROBLEMS, 2023, 39 (02)
  • [9] Efficient generalized Golub-Kahan based methods for dynamic inverse problems
    Chung, Julianne
    Saibaba, Arvind K.
    Brown, Matthew
    Westman, Erik
    INVERSE PROBLEMS, 2018, 34 (02)
  • [10] GENERALIZED GOLUB--KAHAN BIDIAGONALIZATION FOR NONSYMMETRIC SADDLE-POINT SYSTEMS
    Dumitrasc, Andrei
    Kruse, Carola
    Ruede, Ulrich
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2025, 46 (01) : 370 - 392