GENERALIZED GOLUB-KAHAN BIDIAGONALIZATION AND STOPPING CRITERIA

被引:23
|
作者
Arioli, M. [1 ]
机构
[1] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Golub-Kahan bidiagonalization; sparse matrices; stopping criteria; augmented systems; INDEFINITE SYSTEMS; ERROR ESTIMATION; STABILITY; ALGORITHM; MATRICES; LSQR;
D O I
10.1137/120866543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Golub-Kahan bidiagonalization algorithm has been widely used in solving least-squares problems and in the computation of the SVD of rectangular matrices. Here we propose an algorithm based on the Golub-Kahan process for the solution of augmented systems that minimizes the norm of the error and, in particular, we propose a novel estimator of the error similar to the one proposed by Hestenes and Stiefel for the conjugate gradient method and later developed by Golub, Meurant, and Strakos. This estimator gives a lower bound for the error, and can be used as a stopping criterion for the whole process. We also propose an upper bound of the error based on Gauss-Radau quadrature. Finally, we show how we can transform augmented systems arising from the mixed finite-element approximation of partial differential equations in order to achieve a convergence rate independent of the finite dimensional problem size.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 50 条
  • [21] ON TENSOR GMRES AND GOLUB-KAHAN METHODS VIA THE T-PRODUCT FOR COLOR IMAGE PROCESSING
    El Guide, Mohamed
    El Ichi, Alaa
    Jbilou, Khalide
    Sadaka, Rachid
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 524 - 543
  • [22] A GOLUB-KAHAN DAVIDSON METHOD FOR ACCURATELY COMPUTING A FEW SINGULAR TRIPLETS OF LARGE SPARSE MATRICES
    Goldenberg, Steven
    Stathopoulos, Andreas
    Romero, Eloy
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2172 - A2192
  • [23] Application of an iterative Golub-Kahan algorithm to structural mechanics problems with multi-point constraints
    Kruse C.
    Darrigrand V.
    Tardieu N.
    Arioli M.
    Rüde U.
    Advanced Modeling and Simulation in Engineering Sciences, 7 (1)
  • [24] On the block Lanczos and block Golub-Kahan reduction methods applied to discrete ill-posed problems
    Alqahtani, Abdulaziz
    Gazzola, Silvia
    Reichel, Lothar
    Rodriguez, Giuseppe
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)
  • [25] Reorthogonalization for the Golub–Kahan–Lanczos bidiagonal reduction
    Jesse L. Barlow
    Numerische Mathematik, 2013, 124 : 237 - 278
  • [26] Golub-Kahan vs. Monte Carlo: a comparison of bidiagonlization and a randomized SVD method for the solution of linear discrete ill-posed problems
    Bai, Xianglan
    Buccini, Alessandro
    Reichel, Lothar
    BIT NUMERICAL MATHEMATICS, 2021, 61 (04) : 1093 - 1114
  • [27] Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction
    Barlow, Jesse L.
    NUMERISCHE MATHEMATIK, 2013, 124 (02) : 237 - 278
  • [28] A Golub-Kahan-Type Reduction Method for Matrix Pairs
    Hochstenbach, Michiel E.
    Reichel, Lothar
    Yu, Xuebo
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (02) : 767 - 789
  • [29] A Golub–Kahan-Type Reduction Method for Matrix Pairs
    Michiel E. Hochstenbach
    Lothar Reichel
    Xuebo Yu
    Journal of Scientific Computing, 2015, 65 : 767 - 789
  • [30] Weighted Block Golub-Kahan-Lanczos Algorithms for Linear Response Eigenvalue Problem
    Zhong, Hongxiu
    Teng, Zhongming
    Chen, Guoliang
    MATHEMATICS, 2019, 7 (01)