GCV for Tikhonov regularization via global Golub-Kahan decomposition

被引:40
|
作者
Fenu, Caterina [1 ]
Reichel, Lothar [2 ]
Rodriguez, Giuseppe [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
generalized cross validation; Tikhonov regularization; parameter estimation; global Golub-Kahan decomposition; GENERALIZED CROSS-VALIDATION; PARAMETER CHOICE RULES; MATRIX; TRACE; MOMENTS;
D O I
10.1002/nla.2034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized cross validation is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for large-scale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:467 / 484
页数:18
相关论文
共 50 条
  • [41] Nonstationary iterated Tikhonov regularization: convergence analysis via Holder stability
    Mittal, Gaurav
    Giri, Ankik Kumar
    INVERSE PROBLEMS, 2022, 38 (12)
  • [42] Large-scale Tikhonov regularization via reduction by orthogonal projection
    Lampe, Joerg
    Reichel, Lothar
    Voss, Heinrich
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2845 - 2865
  • [43] A discretizing Tikhonov regularization method via modified parameter choice rules
    Zhang, Rong
    Xie, Feiping
    Luo, Xingjun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (04): : 859 - 873
  • [44] Target Detection and Tracking via Sparsity-Promoting Tikhonov Regularization
    Fridman, Sergey
    Nickisch, L. J.
    Hausman, Mark
    Matthews, Michael
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 576 - 581
  • [45] Novel load identification method based on the combination of Tikhonov regularization and singular value decomposition
    Guo, Rong
    Fang, Huai-Qing
    Qiu, Shan
    Yu, Qin-Lin
    Zhu, Wei-Wei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33 (06): : 53 - 58
  • [46] Tomographic Inversion of Urban Area via Tikhonov Regularization and Bayesian Information Criterion
    Bi, Hui
    Xu, Weihao
    Jin, Shuang
    Zhang, Jingjing
    IEEE SENSORS LETTERS, 2025, 9 (02)
  • [47] Global convergence of damped semismooth Newton methods for l1 Tikhonov regularization
    Hans, Esther
    Raasch, Thorsten
    INVERSE PROBLEMS, 2015, 31 (02)
  • [48] Beyond Tikhonov: Faster Learning with Self-Concordant Losses via Iterative Regularization
    Beugnot, Gaspard
    Mairal, Julien
    Rudi, Alessandro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [49] A Tikhonov regularization method to estimate Earth's oblateness variations from global GPS observations
    Jin, Shuanggen
    Zhang, Xinggang
    JOURNAL OF GEODYNAMICS, 2014, 79 : 23 - 29
  • [50] Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization
    Pan, Chu-Dong
    Yu, Ling
    Liu, Huan-Lin
    SMART MATERIALS AND STRUCTURES, 2017, 26 (08)