On the Holder regularity of the weak solution to a drift-diffusion system with pressure

被引:0
|
作者
Miao, Qianyun [1 ]
Xue, Liutang [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst MOE, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
GLOBAL WELL-POSEDNESS; BESOV-SPACES; CONTINUITY; EQUATION;
D O I
10.1007/s00526-018-1438-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the regularity issue of weak solution for the following linear drift-diffusion system with pressure partial derivative(t)u + b center dot del u - del u +. p = 0, div u = 0, u| t= 0(x) = u0(x), where and b is a given divergence-free vector field. Under some assumptions of the drift field b in the critical sense, and for the initial data , we prove that there exists a weak solution u(t) to this system such that u(t) for any time is -Holder continuous with . The proof of the Holder regularity result utilizes a maximum-principle type method to improve the regularity of weak solution step by step.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] On the uniqueness of a solution to the multiplicative control problem for the electron drift-diffusion model
    Brizitskii, Roman Viktorovich
    Maksimova, Nadezhda Nikolaevna
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (01): : 3 - 18
  • [42] TWO DIMENSIONAL DRIFT-DIFFUSION SYSTEM IN A CRITICAL WEIGHTED SPACE
    Kurokiba, Masaki
    Ogawa, Takayoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (7-8) : 753 - 776
  • [43] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION
    Ogawa, Takayoshi
    Yamamoto, Masakazu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (06): : 939 - 967
  • [44] ON THE EXISTENCE OF SOLUTIONS FOR A DRIFT-DIFFUSION SYSTEM ARISING IN CORROSION MODELING
    Chainais-Hillairet, Claire
    Lacroix-Violet, Ingrid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 77 - 92
  • [45] Study of generalized fractional drift-diffusion system in Besov-Morrey Study of generalized fractional drift-diffusion system in Besov-Morrey spaces spaces
    Srhiri, Halima
    Azanzal, Achraf
    Allalou, Chakir
    FILOMAT, 2024, 38 (17) : 6219 - 6235
  • [46] The global existence and semiclassical limit of weak solutions to multidimensional quantum drift-diffusion model
    Chen, Xiuqing
    ADVANCED NONLINEAR STUDIES, 2007, 7 (04) : 651 - 670
  • [47] Outflow probability for drift-diffusion dynamics
    Hinkel, Julia
    Mahnke, Reinhard
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (06) : 1542 - 1561
  • [48] The approximation problem for drift-diffusion systems
    Jerome, JW
    SIAM REVIEW, 1995, 37 (04) : 552 - 572
  • [49] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [50] Challenges in Drift-Diffusion Semiconductor Simulations
    Farrell, Patricio
    Peschka, Dirk
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 615 - 623