On the Holder regularity of the weak solution to a drift-diffusion system with pressure

被引:0
|
作者
Miao, Qianyun [1 ]
Xue, Liutang [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst MOE, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
GLOBAL WELL-POSEDNESS; BESOV-SPACES; CONTINUITY; EQUATION;
D O I
10.1007/s00526-018-1438-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the regularity issue of weak solution for the following linear drift-diffusion system with pressure partial derivative(t)u + b center dot del u - del u +. p = 0, div u = 0, u| t= 0(x) = u0(x), where and b is a given divergence-free vector field. Under some assumptions of the drift field b in the critical sense, and for the initial data , we prove that there exists a weak solution u(t) to this system such that u(t) for any time is -Holder continuous with . The proof of the Holder regularity result utilizes a maximum-principle type method to improve the regularity of weak solution step by step.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Asymptotic behavior of a solution to the drift-diffusion equation for a fast-diffusion case
    Ogawa, Takayoshi
    Suguro, Takeshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 : 114 - 136
  • [32] Solvability for a drift-diffusion system with Robin boundary conditions
    Heibig, A.
    Petrov, A.
    Reichert, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (04) : 2331 - 2356
  • [33] Drift-diffusion equations and applications
    Allegretto, W
    MATHEMATICAL PROBLEMS IN SEMINCONDUCTOR PHYSICS, 2003, 1823 : 57 - 95
  • [34] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [35] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [36] Drift-Diffusion MOSFET Modelling
    Bekaddour, A.
    Bouazza, B.
    Chabanne-Sari, N. E.
    AFRICAN REVIEW OF PHYSICS, 2008, 2 : 3 - 3
  • [37] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [38] The drift-diffusion equation revisited
    Assad, F
    Banoo, K
    Lundstrom, M
    SOLID-STATE ELECTRONICS, 1998, 42 (03) : 283 - 295
  • [39] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [40] Anatomy of the drift-diffusion relationship
    Bringuier, E
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (04): : 959 - 964