Nongaussian distribution of percolation thresholds in finite size lattices

被引:5
|
作者
Wester, F [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
来源
关键词
distribution form; tail exponents; asymmetry; dimension and lattice size dependence; Monte Carlo;
D O I
10.1142/S0129183100000729
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The distribution of site percolation thresholds for finite size lattices is a nonGaussian distribution. In this paper, we try to find out the real form of it.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 50 条
  • [1] Percolation thresholds in hyperbolic lattices
    Mertens, Stephan
    Moore, Cristopher
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [2] Percolation thresholds on elongated lattices
    Marrink, SJ
    Knackstedt, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44): : L461 - L466
  • [3] Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices
    Lorenz, CD
    Ziff, RM
    PHYSICAL REVIEW E, 1998, 57 (01) : 230 - 236
  • [4] ESTIMATES OF PERCOLATION THRESHOLDS FOR LATTICES IN RN
    MENSHIKOV, MV
    DOKLADY AKADEMII NAUK SSSR, 1985, 284 (01): : 36 - 39
  • [5] Bounds of percolation thresholds on hyperbolic lattices
    Lee, Junghoon F.
    Baek, Seung Ki
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [6] Site percolation thresholds for Archimedean lattices
    Suding, PN
    Ziff, RM
    PHYSICAL REVIEW E, 1999, 60 (01) : 275 - 283
  • [7] Site percolation thresholds for Archimedean lattices
    Suding, Paul N.
    Ziff, Robert M.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (01):
  • [8] Improved local spectral gap thresholds for lattices of finite size
    Anshu, Anurag
    PHYSICAL REVIEW B, 2020, 101 (16)
  • [9] Estimation of bond percolation thresholds on the Archimedean lattices
    Parviainen, Robert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : 9253 - 9258
  • [10] Percolation in finite matching lattices
    Mertens, Stephan
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2016, 94 (06)