Nongaussian distribution of percolation thresholds in finite size lattices

被引:5
|
作者
Wester, F [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
来源
关键词
distribution form; tail exponents; asymmetry; dimension and lattice size dependence; Monte Carlo;
D O I
10.1142/S0129183100000729
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The distribution of site percolation thresholds for finite size lattices is a nonGaussian distribution. In this paper, we try to find out the real form of it.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 50 条
  • [31] Analytical approximation of the inverse percolation thresholds for dimers on square, triangular and honeycomb lattices
    Ramirez, L. S.
    Centres, P. M.
    Ramirez-Pastor, A. J.
    Lebrecht, W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (11):
  • [32] Incorporating variability into an approximation formula for bond percolation thresholds of planar periodic lattices
    Wierman, John C.
    Naor, Dora Passen
    Smalletz, Jonathan
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [33] Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals
    Hsu, HP
    Huang, MC
    PHYSICAL REVIEW E, 1999, 60 (06): : 6361 - 6370
  • [35] PERCOLATION IN TWO-DIMENSIONAL LATTICES .1. A TECHNIQUE FOR THE ESTIMATION OF THRESHOLDS
    YONEZAWA, F
    SAKAMOTO, S
    HORI, M
    PHYSICAL REVIEW B, 1989, 40 (01): : 636 - 649
  • [36] Universal formulas for percolation thresholds .2. Extension to anisotropic and aperiodic lattices
    Galam, S
    Mauger, A
    PHYSICAL REVIEW E, 1997, 56 (01): : 322 - 325
  • [37] Percolation thresholds, critical exponents, and scaling functions on spherical random lattices and their duals
    Huang, MC
    Hsu, HP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (03): : 383 - 395
  • [38] Predictions of bond percolation thresholds for the kagome and Archimedean (3,122) lattices
    Scullard, CR
    Ziff, RM
    PHYSICAL REVIEW E, 2006, 73 (04):
  • [39] Probability distribution and sizes of spanning clusters at the percolation thresholds
    Sen, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (02): : 229 - 237
  • [40] Numerical analysis of percolation cluster size distribution in two-dimensional and three-dimensional lattices
    Ding, Binbin
    Li, Chaolin
    Zhang, Meng
    Lu, Gang
    Ji, Fei
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (08):