Percolation in finite matching lattices

被引:18
|
作者
Mertens, Stephan [1 ,2 ]
Ziff, Robert M. [3 ,4 ]
机构
[1] Otto Von Guericke Univ, Inst Theoret Phys, PF 4120, D-39016 Magdeburg, Germany
[2] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
[3] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
THRESHOLDS; DIMENSIONS;
D O I
10.1103/PhysRevE.94.062152
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive an exact, simple relation between the average number of clusters and the wrapping probabilities for two-dimensional percolation. The relation holds for periodic lattices of any size. It generalizes a classical result of Sykes and Essam, and it can be used to find exact or very accurate approximations of the critical density. The criterion that follows is related to the criterion used by Scullard and Jacobsen to find precise approximate thresholds, and our work provides a different perspective on their approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] PERCOLATION THEORY ON PAIRS OF MATCHING LATTICES
    VANDENBERG, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (01) : 152 - 157
  • [2] Nongaussian distribution of percolation thresholds in finite size lattices
    Wester, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 843 - 850
  • [3] Finite size scaling for percolation on elongated lattices in two and three dimensions
    Marrink, SJ
    Knackstedt, MA
    PHYSICAL REVIEW E, 2000, 62 (03): : 3205 - 3214
  • [4] Percolation on hyperbolic lattices
    Baek, Seung Ki
    Minnhagen, Petter
    Kim, Beom Jun
    PHYSICAL REVIEW E, 2009, 79 (01)
  • [5] Percolation on Lieb lattices
    Oliveira, W. S.
    de Lima, J. Pimentel
    Costa, N. C.
    dos Santos, R. R.
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [6] PERCOLATION ON FRACTAL LATTICES
    HAVLIN, S
    BENAVRAHAM, D
    MOVSHOVITZ, D
    PHYSICAL REVIEW LETTERS, 1983, 51 (26) : 2347 - 2350
  • [7] Percolation on growing lattices
    Tiggemann, Daniel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (08): : 1141 - 1150
  • [8] PERCOLATION ON LARGE LATTICES
    RAPAPORT, DC
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 1027 - 1030
  • [9] Improved site percolation threshold universal formula for two-dimensional matching lattices
    Wierman, JC
    Naor, DP
    Cheng, R
    PHYSICAL REVIEW E, 2005, 72 (06):
  • [10] Percolation thresholds in hyperbolic lattices
    Mertens, Stephan
    Moore, Cristopher
    PHYSICAL REVIEW E, 2017, 96 (04)