Iron Single-Atom Catalysts Boost Photoelectrochemical Detection by Integrating Interfacial Oxygen Reduction and Enzyme-Mimicking Activity

被引:94
|
作者
Qin, Ying [1 ]
Wen, Jing [2 ]
Wang, Xiaosi [1 ]
Jiao, Lei [1 ]
Wei, Xiaoqian [1 ]
Wang, Hengjia [1 ]
Li, Jinli [1 ]
Liu, Mingwang [1 ]
Zheng, Lirong [3 ]
Hu, Liuyong [2 ]
Gu, Wenling [1 ]
Zhu, Chengzhou [1 ]
机构
[1] Cent China Normal Univ, Coll Chem, Int Joint Res Ctr Intelligent Biosensing Technol, Key Lab Pesticide & Chem Biol,Minist Educ, Wuhan 430079, Peoples R China
[2] Wuhan Inst Technol, Hubei Engn Technol Res Ctr Optoelect & New Energy, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
photoelectrochemical analysis; single-atom catalysts; nanozymes; oxygen reduction reaction; signal amplification; PHOTOCORROSION INHIBITION; TI3C2TX MXENE; AMPLIFICATION; ENHANCEMENT; OXIDATION; SURFACE; FILM; ZNO;
D O I
10.1021/acsnano.1c10303
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The investigations on the generation, separation, and interfacial-redox-reaction processes of the photoinduced carriers are of paramount importance for realizing efficient photoelectrochemical (PEC) detection. However, the sluggish interfacial reactions of the photogenerated carriers, combined with the need for appropriate photoactive layers for sensing, remain challenges for the construction of advanced PEC platforms. Here, as a proof of concept, well-defined Fe single-atom catalysts (Fe SACs) were integrated on the surface of semiconductors, which amplified the PEC signals via boosting oxygen reduction reaction. Besides, Fe SACs were evidenced with efficient peroxidase-like activity, which depresses the PEC signals through the Fe SACs-mediated enzymatic precipitation reaction. Harnessing the oxygen reduction property and peroxidase-like activity of Fe SACs, a robust PEC sensing platform was successfully constructed for the sensitive detection of acetylcholinesterase activity and organophosphorus pesticides, providing guidelines for the employment of SACs for sensitive PEC analysis.
引用
收藏
页码:2997 / 3007
页数:11
相关论文
共 50 条
  • [41] Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions
    Lee, Seon Yeong
    Jang, Han Wool
    Lee, Hae Ri
    Joh, Han-Ik
    CARBON LETTERS, 2021, 31 (06) : 1349 - 1355
  • [42] Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction
    Yang, Liu
    Xu, Haoxiang
    Liu, Huibing
    Zeng, Xiaofei
    Cheng, Daojian
    Huang, Yan
    Zheng, Lirong
    Cao, Rui
    Cao, Dapeng
    RESEARCH, 2020, 2020
  • [43] Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction
    Ma, Ruguang
    Wang, Jin
    Tang, Yanfeng
    Wang, Jiacheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (01): : 168 - 174
  • [44] First-Principles Insights into Tungsten Semicarbide-Based Single-Atom Catalysts: Single-Atom Migration and Mechanisms in Oxygen Reduction
    Zhu, Xiangyu
    He, Mingqi
    Chen, Xing
    Zhou, Yanan
    Xu, Chang
    Li, Xingxing
    Luo, Qiquan
    Yang, Jinlong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (10): : 2815 - 2824
  • [45] Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Zhao, Chang-Xin
    Li, Bo-Quan
    Liu, Jia-Ning
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (09) : 4448 - 4463
  • [46] Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction
    Hou, Chun-Chao
    Zou, Lianli
    Sun, Liming
    Zhang, Kexin
    Liu, Zheng
    Li, Yinwei
    Li, Caixia
    Zou, Ruqiang
    Yu, Jihong
    Xu, Qiang
    Advanced Materials, 2020, 132 (19) : 7454 - 7459
  • [47] Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction
    Hou, Chun-Chao
    Zou, Lianli
    Sun, Liming
    Zhang, Kexin
    Liu, Zheng
    Li, Yinwei
    Li, Caixia
    Zou, Ruqiang
    Yu, Jihong
    Xu, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (19) : 7384 - 7389
  • [48] Rational design of iron single-atom catalysts for electrochemical nitrate reduction to produce ammonia
    Xi Chen
    Xinlei Ji
    Jia Kou
    Discover Chemical Engineering, 3 (1):
  • [49] Pyrolysis-free synthesis of single-atom cobalt catalysts for efficient oxygen reduction
    Ma, Rui
    Cui, Xun
    Wang, Yonglin
    Xiao, Zongying
    Luo, Rui
    Gao, Likun
    Wei, Zhengnan
    Yang, Yingkui
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5918 - 5924
  • [50] The bifunctional volcano plot: thermodynamic limits for single-atom catalysts for oxygen reduction and evolution
    Kolb, Manuel J.
    Calle-Vallejo, Federico
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5937 - 5941