Iron Single-Atom Catalysts Boost Photoelectrochemical Detection by Integrating Interfacial Oxygen Reduction and Enzyme-Mimicking Activity

被引:94
|
作者
Qin, Ying [1 ]
Wen, Jing [2 ]
Wang, Xiaosi [1 ]
Jiao, Lei [1 ]
Wei, Xiaoqian [1 ]
Wang, Hengjia [1 ]
Li, Jinli [1 ]
Liu, Mingwang [1 ]
Zheng, Lirong [3 ]
Hu, Liuyong [2 ]
Gu, Wenling [1 ]
Zhu, Chengzhou [1 ]
机构
[1] Cent China Normal Univ, Coll Chem, Int Joint Res Ctr Intelligent Biosensing Technol, Key Lab Pesticide & Chem Biol,Minist Educ, Wuhan 430079, Peoples R China
[2] Wuhan Inst Technol, Hubei Engn Technol Res Ctr Optoelect & New Energy, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
photoelectrochemical analysis; single-atom catalysts; nanozymes; oxygen reduction reaction; signal amplification; PHOTOCORROSION INHIBITION; TI3C2TX MXENE; AMPLIFICATION; ENHANCEMENT; OXIDATION; SURFACE; FILM; ZNO;
D O I
10.1021/acsnano.1c10303
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The investigations on the generation, separation, and interfacial-redox-reaction processes of the photoinduced carriers are of paramount importance for realizing efficient photoelectrochemical (PEC) detection. However, the sluggish interfacial reactions of the photogenerated carriers, combined with the need for appropriate photoactive layers for sensing, remain challenges for the construction of advanced PEC platforms. Here, as a proof of concept, well-defined Fe single-atom catalysts (Fe SACs) were integrated on the surface of semiconductors, which amplified the PEC signals via boosting oxygen reduction reaction. Besides, Fe SACs were evidenced with efficient peroxidase-like activity, which depresses the PEC signals through the Fe SACs-mediated enzymatic precipitation reaction. Harnessing the oxygen reduction property and peroxidase-like activity of Fe SACs, a robust PEC sensing platform was successfully constructed for the sensitive detection of acetylcholinesterase activity and organophosphorus pesticides, providing guidelines for the employment of SACs for sensitive PEC analysis.
引用
收藏
页码:2997 / 3007
页数:11
相关论文
共 50 条
  • [21] Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning
    Song, Kexin
    Jing, Haifeng
    Yang, Binbin
    Shao, Jing
    Tao, Youkun
    Zhang, Wei
    CHEMSUSCHEM, 2025, 18 (02)
  • [22] Single-Atom catalysts for oxygen reduction reaction and methanol oxidation reaction
    Kaur, Jasvinder
    Sharma, Vivek
    Das, Dipak Kumar
    Pandit, Bidhan
    Samdani, Mohd Shahzad
    Shkir, Mohd
    Manthrammel, M. Aslam
    Nangan, Senthilkumar
    Angadi, V. Jagadeesha
    Ubaidullah, Mohd
    FUEL, 2024, 358
  • [23] Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction
    Yang, Sungeun
    Tak, Young Joo
    Kim, Jiwhan
    Soon, Aloysius
    Lee, Hyunjoo
    ACS CATALYSIS, 2017, 7 (02): : 1301 - 1307
  • [24] Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review
    Zhang, Jincheng
    Yang, Hongbin
    Liu, Bin
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [25] Coordination modulation of single-atom Zn sites to boost oxygen reduction performance
    Zhang, Siying
    Bai, Xue
    Tang, Tianmi
    Ruan, Weidong
    Guan, Jingqi
    INORGANIC CHEMISTRY FRONTIERS, 2025,
  • [26] Probing high catalytic activity and selectivity of enzyme-mimicking single-atom catalysts formed by pyrrole-type M-N4 sites embedded into g-C3N4 for oxygen reduction reaction
    Zhu, Haiye
    Zhao, Xiuyun
    Chen, Xin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [27] Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study
    Jiao, Dongxu
    Liu, Yuejie
    Cai, Qinghai
    Zhao, Jingxiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 1240 - 1251
  • [28] Recent Developments of Microenvironment Engineering of Single-Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity
    Li, Longbin
    Huang, Bingyu
    Tang, Xiannong
    Hong, Yaoshuai
    Zhai, Weijuan
    Hu, Ting
    Yuan, Kai
    Chen, Yiwang
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (45)
  • [29] Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters
    Ao, Xiang
    Zhang, Wei
    Li, Zhishan
    Li, Jian-Gang
    Soule, Luke
    Huang, Xing
    Chiang, Wei-Hung
    Chen, Hao Ming
    Wang, Chundong
    Liu, Meilin
    Zeng, Xiao Cheng
    ACS NANO, 2019, 13 (10) : 11853 - 11862
  • [30] Quantifying Asymmetric Coordination to Correlate with Oxygen Reduction Activity in Fe-Based Single-Atom Catalysts
    Cao, Yanhui
    Liu, Yuan
    Zheng, Xuerong
    Yang, Jingxia
    Wang, Haozhi
    Zhang, Jinfeng
    Han, Xiaopeng
    Deng, Yida
    Rupprechter, Guenther
    Hu, Wenbin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (14)