Poisson point process modeling for polyphonic music transcription

被引:6
|
作者
Peeling, Paul [1 ]
Li, Chung-fai [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
来源
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1121/1.2716156
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings. (c) 2007 Acoustical Society of America.
引用
收藏
页码:EL168 / EL175
页数:8
相关论文
共 50 条
  • [31] sppmix: Poisson point process modeling using normal mixture models
    Micheas, Athanasios C.
    Chen, Jiaxun
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1767 - 1798
  • [32] sppmix: Poisson point process modeling using normal mixture models
    Athanasios C. Micheas
    Jiaxun Chen
    Computational Statistics, 2018, 33 : 1767 - 1798
  • [33] An End-to-End Neural Network for Polyphonic Piano Music Transcription
    Sigtia, Siddharth
    Benetos, Emmanouil
    Dixon, Simon
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (05) : 927 - 939
  • [34] Singing Transcription from Polyphonic Music Using Melody Contour Filtering
    He, Zhuang
    Feng, Yin
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [35] Modeling Point Referenced Spatial Count Data: A Poisson Process Approach
    Morales-Navarrete, Diego
    Bevilacqua, Moreno
    Caamano-Carrillo, Christian
    Castro, Luis M.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 664 - 677
  • [36] Polyphonic Piano Transcription with a Note-Based Music Language Model
    Wang, Qi
    Zhou, Ruohua
    Yan, Yonghong
    APPLIED SCIENCES-BASEL, 2018, 8 (03):
  • [37] Polyphonic Music Transcription by Nonnegative Matrix Factorization with Harmonicity and Temporality Criteria
    Park, Sang Ha
    Lee, Seokjin
    Sung, Koeng-Mo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (09) : 1610 - 1614
  • [38] A Genetic Algorithm Approach with Harmonic Structure Evolution for Polyphonic Music Transcription
    Reis, Gustavo
    Fonseca, Nuno
    Fernandez, Francisco
    Ferreira, Anibal
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 491 - +
  • [39] Evaluation of the Convolutional NMF for Supervised Polyphonic Music Transcription and Note Isolation
    Gorlow, Stanislaw
    Janer, Jordi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 437 - 445
  • [40] Support Vector Machine-based Automatic Music Transcription for Transcribing Polyphonic Music into MusicXML
    Fathurahman, Krisna
    Lestari, Dessi Puji
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 535 - 539