Poisson point process modeling for polyphonic music transcription

被引:6
|
作者
Peeling, Paul [1 ]
Li, Chung-fai [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
来源
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1121/1.2716156
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings. (c) 2007 Acoustical Society of America.
引用
收藏
页码:EL168 / EL175
页数:8
相关论文
共 50 条
  • [21] Automatic transcription of melody, bass line, and chords in polyphonic music
    Ryynanen, Matti P.
    Klapuri, Anssi P.
    COMPUTER MUSIC JOURNAL, 2008, 32 (03) : 72 - 86
  • [22] Non-negative matrix factorization for polyphonic music transcription
    Smaragdis, P
    Brown, JC
    2003 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS PROCEEDINGS, 2003, : 177 - 180
  • [23] POLYPHONIC MUSIC TRANSCRIPTION USING NOTE ONSET AND OFFSET DETECTION
    Benetos, Emmanouil
    Dixon, Simon
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 37 - 40
  • [24] Automatic transcription of polyphonic music using the multiresolution Fourier Transform
    Keren, R
    Zeevi, YY
    Chazan, D
    MELECON '98 - 9TH MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 1998, : 654 - 657
  • [25] Instrument Learning and Sparse NMD for Automatic Polyphonic Music Transcription
    Rizzi, Antonello
    Antonelli, Mario
    Luzi, Massimiliano
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (07) : 1405 - 1415
  • [26] Automatic Transcription of Flamenco Singing From Polyphonic Music Recordings
    Kroher, Nadine
    Gomez, Emilia
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (05) : 901 - 913
  • [27] DRUM TRANSCRIPTION FROM POLYPHONIC MUSIC WITH RECURRENT NEURAL NETWORKS
    Vogl, Richard
    Dorfer, Matthias
    Knees, Peter
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 201 - 205
  • [28] Application of Auditory Filter-Banks in Polyphonic Music Transcription
    Velazquez Lopez, Omar
    Oropeza Rodriguez, Jose Luis
    Suarez Guerra, Sergio
    COMPUTACION Y SISTEMAS, 2022, 26 (04): : 1421 - 1428
  • [29] On the Effect of Memory Width in Automatic Transcription Systems for Polyphonic Piano Music
    Costantini, Giovanni
    Todisco, Massimiliano
    Saggio, Giovanni
    IMCIC'11: THE 2ND INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL I, 2011, : 124 - 127
  • [30] LARGE SCALE POLYPHONIC MUSIC TRANSCRIPTION USING RANDOMIZED MATRIX DECOMPOSITIONS
    Ari, Ismail
    Simsekli, Umut
    Cemgil, Ali Taylan
    Akarun, Lale
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2020 - 2024