XY model with higher-order exchange

被引:14
|
作者
Zukovic, Milan [1 ]
Kalagov, Georgii [1 ]
机构
[1] P J Safarik Univ, Fac Sci, Inst Phys, Pk Angelinum 9, Kosice 04154, Slovakia
关键词
PHASE-TRANSITIONS; 2-DIMENSIONAL SYSTEMS; 1ST-ORDER TRANSITION; DIAGRAM; LATTICE;
D O I
10.1103/PhysRevE.96.022158
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent eta = T/[2 pi J(p, alpha)], nonlinearly dependent on the parameters p and alpha that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420
  • [42] A Longitudinal Higher-Order Diagnostic Classification Model
    Zhan, Peida
    Jiao, Hong
    Liao, Dandan
    Li, Feiming
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2019, 44 (03) : 251 - 281
  • [43] A higher-order macroscopic model for pedestrian flows
    Jiang, Yan-qun
    Zhang, Peng
    Wong, S. C.
    Liu, Ru-xun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4623 - 4635
  • [44] Higher-Order Model Checking in Direct Style
    Terao, Taku
    Tsukada, Takeshi
    Kobayashi, Naoki
    PROGRAMMING LANGUAGES AND SYSTEMS, APLAS 2016, 2016, 10017 : 295 - 313
  • [45] A higher-order finite element to model singularities
    Wahab, MMA
    DAMAGE AND FRACTURE MECHANICS VI: COMPUTER AIDED ASSESSMENT AND CONTROL, 2000, 6 : 511 - 520
  • [46] Higher-Order Maxwell–Stefan Model of Diffusion
    Grec B.
    Simić S.
    La Matematica, 2023, 2 (4): : 962 - 991
  • [47] HIGHER-ORDER OPTIMALITY CONDITIONS AND HIGHER-ORDER TANGENT SETS
    Penot, Jean-Paul
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (04) : 2508 - 2527
  • [48] Typed higher-order narrowing without higher-order strategies
    Antoy, S
    Tolmach, A
    FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 1999, 1722 : 335 - 352
  • [49] Higher-order asymptotics under model misspecification
    Viraswami, K
    Reid, N
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (02): : 263 - 278
  • [50] A Higher-Order Model for Fluid Motion Estimation
    Liu, Wei
    Ribeiro, Eraldo
    IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT I, 2011, 6753 : 325 - 334