XY model with higher-order exchange

被引:14
|
作者
Zukovic, Milan [1 ]
Kalagov, Georgii [1 ]
机构
[1] P J Safarik Univ, Fac Sci, Inst Phys, Pk Angelinum 9, Kosice 04154, Slovakia
关键词
PHASE-TRANSITIONS; 2-DIMENSIONAL SYSTEMS; 1ST-ORDER TRANSITION; DIAGRAM; LATTICE;
D O I
10.1103/PhysRevE.96.022158
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent eta = T/[2 pi J(p, alpha)], nonlinearly dependent on the parameters p and alpha that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An Algebra Model for the Higher-Order Sum Rules
    Yan, Jun
    CONSTRUCTIVE APPROXIMATION, 2018, 48 (03) : 453 - 471
  • [32] Higher-order lattice Boltzmann model for thermohydrodynamics
    Atif, Mohammad
    Namburi, Manjusha
    Ansumali, Santosh
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [33] Network model for higher-order topological phases
    Liu, Hui
    Franca, Selma
    Moghaddam, Ali G.
    Hassler, Fabian
    Fulga, Ion Cosma
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [34] Comparative higher-order risk aversion and higher-order prudence
    Wong, Kit Pong
    ECONOMICS LETTERS, 2018, 169 : 38 - 42
  • [35] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [36] Higher-Order Model of Resilience in the Canadian Forces
    Lee, Jennifer E. C.
    Sudom, Kerry A.
    McCreary, Donald R.
    CANADIAN JOURNAL OF BEHAVIOURAL SCIENCE-REVUE CANADIENNE DES SCIENCES DU COMPORTEMENT, 2011, 43 (03): : 222 - 234
  • [37] NONLOCAL HIGHER-ORDER SYMMETRIES FOR THE FEDERBUSH MODEL
    SLUIS, WM
    KERSTEN, PHM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : 2195 - 2204
  • [38] The HyperKron Graph Model for higher-order features
    Eikmeier, Nicole
    Gleich, David F.
    Ramani, Arjun S.
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 941 - 946
  • [39] Higher-order Hamiltonians for the trigonometric Gaudin model
    Molev, Alexander
    Ragoucy, Eric
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (09) : 2035 - 2048
  • [40] Higher-order Hamiltonians for the trigonometric Gaudin model
    Alexander Molev
    Eric Ragoucy
    Letters in Mathematical Physics, 2019, 109 : 2035 - 2048