Finite Element Scheme with Crank-Nicolson Method for Parabolic Nonlocal Problems Involving the Dirichlet Energy

被引:5
|
作者
Chaudhary, Sudhakar [1 ]
Srivastava, Vimal [1 ]
Kumar, V. V. K. Srinivas [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
关键词
Kirchhoff equation; Crank-Nicolson method; Newton's method; APPROXIMATIONS; EQUATIONS;
D O I
10.1142/S0219876217500530
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a finite element scheme with Crank-Nicolson method for solving nonlocal parabolic problems involving the Dirichlet energy. We discuss the well-posedness of the weak formulation at continuous as well as at discrete levels. We derive a priori error estimates for both semi-discrete and fully-discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations
    Wang, Cheng
    Wang, Jilu
    Xia, Zeyu
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 767 - 789
  • [42] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [43] Two-Grid Finite Element Methods of Crank-Nicolson Galerkin Approximation for a Nonlinear Parabolic Equation
    Tan, Zhijun
    Li, Kang
    Chen, Yanping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 800 - 817
  • [44] A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
    Luo, Zhendong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [45] A Crank-Nicolson Petrov-Galerkin method with quadrature for semi-linear parabolic problems
    Bialecki, B
    Ganesh, M
    Mustapha, K
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 918 - 937
  • [46] A PRIORI ERROR ANALYSIS OF THE PETROV-GALERKIN CRANK-NICOLSON SCHEME FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Meidner, Dominik
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (05) : 2183 - 2211
  • [47] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [48] The Crank-Nicolson orthogonal spline collocation method for one-dimensional parabolic problems with interfaces
    Bhal, Santosh Kumar
    Danumjaya, P.
    Fairweather, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [49] Explicit FDTD method based on iterated Crank-Nicolson scheme
    Shibayama, Jun
    Nishio, Tomomasa
    Yamauchi, Junji
    Nakano, Hisamatsu
    ELECTRONICS LETTERS, 2022, 58 (01) : 16 - 18
  • [50] AN ANISOTROPIC ERROR ESTIMATOR FOR THE CRANK-NICOLSON METHOD: APPLICATION TO A PARABOLIC PROBLEM
    Lozinski, Alexei
    Picasso, Marco
    Prachittham, Virabouth
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2757 - 2783