Finite Element Scheme with Crank-Nicolson Method for Parabolic Nonlocal Problems Involving the Dirichlet Energy

被引:5
|
作者
Chaudhary, Sudhakar [1 ]
Srivastava, Vimal [1 ]
Kumar, V. V. K. Srinivas [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
关键词
Kirchhoff equation; Crank-Nicolson method; Newton's method; APPROXIMATIONS; EQUATIONS;
D O I
10.1142/S0219876217500530
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a finite element scheme with Crank-Nicolson method for solving nonlocal parabolic problems involving the Dirichlet energy. We discuss the well-posedness of the weak formulation at continuous as well as at discrete levels. We derive a priori error estimates for both semi-discrete and fully-discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Crank-Nicolson Method of a Two-Grid Finite Volume Element Algorithm for Nonlinear Parabolic Equations
    Gong, Yunjie
    Chen, Chuanjun
    Lou, Yuzhi
    Xue, Guanyu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (03) : 540 - 559
  • [22] A Posteriori Error Analysis of the Crank-Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    Reddy, G. Murali Mohan
    Sinha, Rajen Kumar
    Cuminato, Jose Alberto
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 414 - 441
  • [23] AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS
    Ohm, Mi Ray
    Shin, Jun Yong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1409 - 1419
  • [24] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    冯新龙
    何银年
    Acta Mathematica Scientia, 2016, 36 (01) : 124 - 138
  • [25] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    Feng, Xinlong
    He, Yinnian
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 124 - 138
  • [26] Crank-Nicolson compact difference schemes and their efficient implementations for a class of nonlocal nonlinear parabolic problems
    Gong, Chunye
    Li, Dongfang
    Li, Lili
    Zhao, Dan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 132 : 1 - 17
  • [27] CRANK-NICOLSON SPLITTING POSITIVE DEFINITE MIXED ELEMENT DISCRETIZATION OF PARABOLIC CONTROL PROBLEMS
    Tang, Yuelong
    Hua, Yuchun
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [28] A stabilized finite element method for the time-dependent Stokes equations based on Crank-Nicolson Scheme
    Huang, Pengzhan
    Feng, Xinlong
    Liu, Demin
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 1910 - 1919
  • [29] A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations
    Luo, Zhendong
    Li, Hong
    Sun, Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 5887 - 5900
  • [30] A parallel Crank-Nicolson finite difference method for time-fractional parabolic equation
    Sweilam, N. H.
    Moharram, H.
    Moniem, N. K. Abdel
    Ahmed, S.
    JOURNAL OF NUMERICAL MATHEMATICS, 2014, 22 (04) : 363 - 382