Finite Element Scheme with Crank-Nicolson Method for Parabolic Nonlocal Problems Involving the Dirichlet Energy

被引:5
|
作者
Chaudhary, Sudhakar [1 ]
Srivastava, Vimal [1 ]
Kumar, V. V. K. Srinivas [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
关键词
Kirchhoff equation; Crank-Nicolson method; Newton's method; APPROXIMATIONS; EQUATIONS;
D O I
10.1142/S0219876217500530
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a finite element scheme with Crank-Nicolson method for solving nonlocal parabolic problems involving the Dirichlet energy. We discuss the well-posedness of the weak formulation at continuous as well as at discrete levels. We derive a priori error estimates for both semi-discrete and fully-discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems
    Weng, Zhifeng
    Feng, Xinlong
    Huang, Pengzhan
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5068 - 5079
  • [2] WEAK GALERKIN FINITE ELEMENT METHODS COMBINED WITH CRANK-NICOLSON SCHEME FOR PARABOLIC INTERFACE PROBLEMS
    Deka, Bhupen
    Roy, Papri
    Kumar, Naresh
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1433 - 1442
  • [3] Crank-Nicolson finite difference schemes for parabolic optimal Dirichlet boundary control problems
    Yang, Caijie
    Sun, Tongjun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7346 - 7363
  • [4] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289
  • [5] A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems
    Yi, Huaming
    Chen, Yanping
    Wang, Yang
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 1 - 22
  • [6] A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (05) : 688 - 704
  • [7] Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems
    Kim, Dongho
    Park, Eun-Jae
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (04): : 873 - 886
  • [8] Stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model
    Ge, Zhihao
    He, Yanan
    Li, Tingting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1412 - 1428
  • [9] A NEW ERROR ESTIMATE FOR A FULLY FINITE ELEMENT DISCRETIZATION SCHEME FOR PARABOLIC EQUATIONS USING CRANK-NICOLSON METHOD
    Bradji, Abdallah
    Fuhrmann, Juergen
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 113 - 124
  • [10] Two-Grid Finite Volume Element Method Combined with Crank-Nicolson Scheme for Semilinear Parabolic Equations
    Lou, Yuzhi
    Chen, Chuanjun
    Xue, Guanyu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) : 892 - 913