Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios

被引:207
|
作者
Beyene, Tazebe [1 ]
Lettenmaier, Dennis P. [1 ]
Kabat, Pavel [2 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Wageningen Univ & Res Ctr, ALTERRA Green World Res, NL-6700 AA Wageningen, Netherlands
关键词
WATER-RESOURCES; MODEL; PRECIPITATION; TEMPERATURE; SIMULATION; VARIABILITY; CIRCULATION; BALANCE; RUNOFF; STATES;
D O I
10.1007/s10584-009-9693-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010-2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040-2069) and late (2070-2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950-1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt's hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.
引用
收藏
页码:433 / 461
页数:29
相关论文
共 50 条
  • [41] Modelling spatial and temporal variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia, Canada
    Shrestha, Rajesh R.
    Schnorbus, Markus A.
    Werner, Arelia T.
    Berland, Anne J.
    HYDROLOGICAL PROCESSES, 2012, 26 (12) : 1841 - 1861
  • [42] Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China
    Zhang, Yuqing
    You, Qinglong
    Chen, Changchun
    Ge, Jing
    ATMOSPHERIC RESEARCH, 2016, 178 : 521 - 534
  • [43] Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China
    Wang, Jun
    Liang, Zhongmin
    Wang, Dong
    Liu, Tian
    Yang, Jing
    ADVANCES IN METEOROLOGY, 2016, 2016
  • [44] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Chen, Qihui
    Chen, Hua
    Zhang, Jun
    Hou, Yukun
    Shen, Mingxi
    Chen, Jie
    Xu, Chongyu
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 85 - 102
  • [45] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    CHEN Qihui
    CHEN Hua
    ZHANG Jun
    HOU Yukun
    SHEN Mingxi
    CHEN Jie
    XU Chongyu
    JournalofGeographicalSciences, 2020, 30 (01) : 85 - 102
  • [46] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Qihui Chen
    Hua Chen
    Jun Zhang
    Yukun Hou
    Mingxi Shen
    Jie Chen
    Chongyu Xu
    Journal of Geographical Sciences, 2020, 30 : 85 - 102
  • [47] Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda
    Kingston, D. G.
    Taylor, R. G.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (07) : 1297 - 1308
  • [48] Precipitation change and human impacts on hydrologic variables in Zhengshui River Basin, China
    Juan Du
    Fei He
    Zhao Zhang
    Peijun Shi
    Stochastic Environmental Research and Risk Assessment, 2011, 25 : 1013 - 1025
  • [49] Precipitation change and human impacts on hydrologic variables in Zhengshui River Basin, China
    Du, Juan
    He, Fei
    Zhang, Zhao
    Shi, Peijun
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2011, 25 (07) : 1013 - 1025
  • [50] The impacts of climate variability and future climate change in the Nile Basin on water resources in Egypt
    Sch of Environmental Sci, Univ of East Anglia, Climatic Research Unit, Norwich NR4 7TJ, United Kingdom
    Int J Water Resour Dev, 3 (277-296):