Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios

被引:207
|
作者
Beyene, Tazebe [1 ]
Lettenmaier, Dennis P. [1 ]
Kabat, Pavel [2 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Wageningen Univ & Res Ctr, ALTERRA Green World Res, NL-6700 AA Wageningen, Netherlands
关键词
WATER-RESOURCES; MODEL; PRECIPITATION; TEMPERATURE; SIMULATION; VARIABILITY; CIRCULATION; BALANCE; RUNOFF; STATES;
D O I
10.1007/s10584-009-9693-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010-2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040-2069) and late (2070-2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950-1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt's hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.
引用
收藏
页码:433 / 461
页数:29
相关论文
共 50 条
  • [21] Runoff sensitivity to climate change in the Nile River Basin
    Hasan, Emad
    Tarhule, Aondover
    Kirstetter, Pierre-Emmanuel
    Clark, Race, III
    Hong, Yang
    JOURNAL OF HYDROLOGY, 2018, 561 : 312 - 321
  • [22] Assessment of climate change impact on flow regimes over the Gomti River basin under IPCC AR5 climate change scenarios
    Abeysingha, N. S.
    Islam, Adlul
    Singh, Man
    JOURNAL OF WATER AND CLIMATE CHANGE, 2020, 11 (01) : 303 - 326
  • [23] Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia
    Mengistu, Daniel
    Bewket, Woldeamlak
    Dosio, Alessandro
    Panitz, Hans-Juergen
    JOURNAL OF HYDROLOGY, 2021, 592
  • [24] HYDROLOGIC EFFECTS OF CLIMATE CHANGE IN THE DELAWARE RIVER BASIN - REPLY
    MCCABE, GJ
    AYERS, MA
    WATER RESOURCES BULLETIN, 1990, 26 (05): : 833 - 834
  • [25] Hydrologic response to climate change in the Densu River Basin in Ghana
    Oti, Jonathan Opoku
    Kabo-bah, Amos T.
    Ofosu, Eric
    HELIYON, 2020, 6 (08)
  • [26] THE IMPACTS OF CLIMATE CHANGE ACCORDING TO THE IPCC
    Tol, Richard S. J.
    CLIMATE CHANGE ECONOMICS, 2016, 7 (01)
  • [27] Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea
    Kim, Jinsoo
    Choi, Jisun
    Choi, Chuluong
    Park, Soyoung
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 452 : 181 - 195
  • [28] Coupling Nile Basin 2050 scenarios with the IPCC 2100 projections for climate-induced risk reduction
    Onencan, Abby
    Enserink, Bert
    Van de Walle, Bartel
    Chelang'a, James
    HUMANITARIAN TECHNOLOGY: SCIENCE, SYSTEMS AND GLOBAL IMPACT 2016, HUMTECH2016, 2016, 159 : 357 - 365
  • [29] Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia1
    Kim, Ungtae
    Kaluarachchi, Jagath J.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2009, 45 (06): : 1361 - 1378
  • [30] Climate Change Impacts on the Hydrology of the Brahmaputra River Basin
    Palash, Wahid
    Bajracharya, Sagar Ratna
    Shrestha, Arun Bhakta
    Wahid, Shahriar
    Hossain, Md. Shahadat
    Mogumder, Tarun Kanti
    Mazumder, Liton Chandra
    CLIMATE, 2023, 11 (01)