Acyclic Edge Chromatic Number of Outerplanar Graphs

被引:36
|
作者
Hou, Jian-Feng [1 ,2 ]
Wu, Jian-Liang [1 ]
Liu, Gui-Zhen [1 ]
Liu, Bin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
关键词
acyclic; edge coloring; outerplanar graph; PLANAR GRAPHS; COLORINGS;
D O I
10.1002/jgt.20436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by 7(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using chi(a)'(G) colors. (C) 2009 Wiley Periodicals. Inc. J Graph Theory 64: 22-36, 2010
引用
收藏
页码:22 / 36
页数:15
相关论文
共 50 条
  • [41] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    张忠辅
    张建勋
    王建方
    ScienceBulletin, 1987, (17) : 1223 - 1223
  • [42] The decycling number of outerplanar graphs
    Huilan Chang
    Hung-Lin Fu
    Min-Yun Lien
    Journal of Combinatorial Optimization, 2013, 25 : 536 - 542
  • [43] Pseudo-outerplanar graphs and chromatic conjectures
    Tian, Jingjing
    Zhang, Xin
    ARS COMBINATORIA, 2014, 114 : 353 - 361
  • [44] CHROMATIC POLYNOMIALS, POLYGON TREES, AND OUTERPLANAR GRAPHS
    WAKELIN, CD
    WOODALL, DR
    JOURNAL OF GRAPH THEORY, 1992, 16 (05) : 459 - 466
  • [45] The decycling number of outerplanar graphs
    Chang, Huilan
    Fu, Hung-Lin
    Lien, Min-Yun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 536 - 542
  • [46] AN ALGORITHMIC APPROACH TO EQUITABLE EDGE CHROMATIC NUMBER OF GRAPHS
    Vivik, Veninstine J.
    Girija, G.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 374 - 383
  • [47] On the adjacent vertex distinguishing edge chromatic number of graphs
    Wang, Zhiwen
    ARS COMBINATORIA, 2016, 124 : 379 - 388
  • [48] Critical graphs for the chromatic edge-stability number
    Bresar, Bostjan
    Klavzar, Sandi
    Movarraei, Nazanin
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [49] On critical graphs for the chromatic edge-stability number
    Lei, Hui
    Lian, Xiaopan
    Meng, Xianhao
    Shi, Yongtang
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [50] Independence number of edge-chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    Jing, Guangming
    Shan, Songling
    JOURNAL OF GRAPH THEORY, 2022, 101 (02) : 288 - 310