A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by 7(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using chi(a)'(G) colors. (C) 2009 Wiley Periodicals. Inc. J Graph Theory 64: 22-36, 2010
机构:
Hebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Hebei, Peoples R ChinaHebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Hebei, Peoples R China
Wang, Ying
Wang, Yiqiao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Chinese Med, Sch Management, Beijing 100029, Peoples R ChinaHebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Hebei, Peoples R China
Wang, Yiqiao
Wang, Weifan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R ChinaHebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Hebei, Peoples R China
Wang, Weifan
Cui, Shuyu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R ChinaHebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Hebei, Peoples R China
机构:
China Univ Min & Technol, Sch Sci, Xuzhou 221008, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Sci, Xuzhou 221008, Jiangsu, Peoples R China