Acyclic Edge Chromatic Number of Outerplanar Graphs

被引:36
|
作者
Hou, Jian-Feng [1 ,2 ]
Wu, Jian-Liang [1 ]
Liu, Gui-Zhen [1 ]
Liu, Bin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
关键词
acyclic; edge coloring; outerplanar graph; PLANAR GRAPHS; COLORINGS;
D O I
10.1002/jgt.20436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by 7(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using chi(a)'(G) colors. (C) 2009 Wiley Periodicals. Inc. J Graph Theory 64: 22-36, 2010
引用
收藏
页码:22 / 36
页数:15
相关论文
共 50 条
  • [21] CHROMATIC INDEX OF OUTERPLANAR GRAPHS
    FIORINI, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 35 - 38
  • [22] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [23] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [24] REGULAR GRAPHS AND EDGE CHROMATIC NUMBER
    FAUDREE, RJ
    SHEEHAN, J
    DISCRETE MATHEMATICS, 1984, 48 (2-3) : 197 - 204
  • [25] Edge-face chromatic number and edge chromatic number of simple plane graphs
    Luo, R
    Zhang, CQ
    JOURNAL OF GRAPH THEORY, 2005, 49 (03) : 234 - 256
  • [26] Improved upper bound for acyclic chromatic number of graphs
    Cai, Jiansheng
    Wang, Jihui
    Yu, Jiguo
    ARS COMBINATORIA, 2019, 142 : 231 - 237
  • [27] The r-acyclic chromatic number of planar graphs
    Wang, Guanghui
    Yan, Guiying
    Yu, Jiguo
    Zhang, Xin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (04) : 713 - 722
  • [28] Strong Chromatic Index of Outerplanar Graphs
    Wang, Ying
    Wang, Yiqiao
    Wang, Weifan
    Cui, Shuyu
    AXIOMS, 2022, 11 (04)
  • [29] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [30] On the Independence Number of Edge Chromatic Critical Graphs
    Miao Lianying
    ARS COMBINATORIA, 2011, 98 : 471 - 481