Consensus Anomaly Detection Using Clustering Methods in Hyperspectral imagery

被引:0
|
作者
Amiel, Yoav [1 ]
Frajman, Adar [1 ]
Rotman, Stanley R. [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[2] Portland State Univ, Dept Elect & Comp Engn, Portland, OR 97207 USA
关键词
Image Processing; Hyperspectral; Anomalies detection; RX algorithm; NNMF algorithm; SSRX; Consensus Detection; Machine Learning;
D O I
10.1117/12.2568411
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A common anomaly detection algorithm for hyperspectral imagery is the RX algorithm based on the Mahalanobis distance of each pixel from the expected value of that pixel. This algorithm can be applied either directly on a hyperspectral image or on a dimensionality-reduced hyperspectral image. Recent work on Non-Negative Matrix Factorization (NNMF) provides a fast-iterative algorithm for decomposing a hyperspectral cube and achieving dimensionality reduction. In this paper, we present the RICHARD (Robust Iterative Consensus Anomaly RX Detection) algorithm that generates more than 100 RX tests after data manipulations (such as Principal Component Analysis (PCA) and NNMF) which vary in their specific parameters; we then use a weighted consensus voting process in order to detect anomalies without any prior knowledge. Using the RICHARD algorithm can enhance our options in finding obscure anomalies which do not appear in every algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Compression technique for hyperspectral imagery oriented anomaly detection
    Nian, Yong-Jian
    Wang, Zhan
    Wan, Jian-Wei
    Xin, Qin
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2009, 31 (03): : 48 - 52
  • [32] Kernel Sparse Representation for Anomaly Detection in Hyperspectral Imagery
    Xiong, Jie
    Ling, Qiang
    Lin, Zaiping
    Wu, Jing
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 106 - 110
  • [33] Background Suppression Issues in Anomaly Detection for Hyperspectral Imagery
    Wang, Yulei
    Chen, Shih-Yu
    Liu, Chunhong
    Chang, Chein-, I
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [34] Multiple Band Selection for Anomaly Detection in Hyperspectral Imagery
    Wang, Lin
    Chang, Chein-I
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7022 - 7025
  • [35] Kernel-based anomaly detection in hyperspectral imagery
    Kwon, Heesung
    Nasrabadi, Nasser M.
    TRANSFORMATIONAL SCIENCE AND TECHNOLOGY FOR THE CURRENT AND FUTURE FORCE, 2006, 42 : 3 - +
  • [36] Saliency weighted RX hyperspectral imagery anomaly detection
    Liu J.
    Wang S.
    Liu W.
    Hu B.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (03): : 418 - 430
  • [37] Locality-Constrained Anomaly Detection for Hyperspectral Imagery
    Liu, Jiabin
    Li, Wei
    Du, Qian
    Liu, Kui
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [38] Unmixing component analysis for anomaly detection in hyperspectral imagery
    Gu, Yanfeng
    Ye, Zhang
    Ying, Liu
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 965 - +
  • [39] Multiple-Window Anomaly Detection for Hyperspectral Imagery
    Liu, Wei-Min
    Chang, Chein-I
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 644 - 658
  • [40] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291