Consensus Anomaly Detection Using Clustering Methods in Hyperspectral imagery

被引:0
|
作者
Amiel, Yoav [1 ]
Frajman, Adar [1 ]
Rotman, Stanley R. [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[2] Portland State Univ, Dept Elect & Comp Engn, Portland, OR 97207 USA
关键词
Image Processing; Hyperspectral; Anomalies detection; RX algorithm; NNMF algorithm; SSRX; Consensus Detection; Machine Learning;
D O I
10.1117/12.2568411
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A common anomaly detection algorithm for hyperspectral imagery is the RX algorithm based on the Mahalanobis distance of each pixel from the expected value of that pixel. This algorithm can be applied either directly on a hyperspectral image or on a dimensionality-reduced hyperspectral image. Recent work on Non-Negative Matrix Factorization (NNMF) provides a fast-iterative algorithm for decomposing a hyperspectral cube and achieving dimensionality reduction. In this paper, we present the RICHARD (Robust Iterative Consensus Anomaly RX Detection) algorithm that generates more than 100 RX tests after data manipulations (such as Principal Component Analysis (PCA) and NNMF) which vary in their specific parameters; we then use a weighted consensus voting process in order to detect anomalies without any prior knowledge. Using the RICHARD algorithm can enhance our options in finding obscure anomalies which do not appear in every algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hyperspectral imagery: Clutter adaptation in anomaly detection
    Schweizer, SM
    Moura, JMF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1855 - 1871
  • [22] Adaptive causal anomaly detection for hyperspectral imagery
    Hsueh, M
    Chang, CI
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3222 - 3224
  • [23] Using self-organizing maps for anomaly detection in hyperspectral imagery
    Penn, BS
    2002 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2002, : 1531 - 1535
  • [24] Rare signal component extraction based on kernel methods for anomaly detection in hyperspectral imagery
    Gu, Yanfeng
    Zhang, Lin
    NEUROCOMPUTING, 2013, 108 : 103 - 110
  • [25] Anomaly Detection from Hyperspectral Remote Sensing Imagery
    Guo, Qiandong
    Pu, Ruiliang
    Cheng, Jun
    GEOSCIENCES, 2016, 6 (04)
  • [26] Band Subset Selection for Anomaly Detection in Hyperspectral Imagery
    Wang, Lin
    Chang, Chein-I
    Lee, Li-Chien
    Wang, Yulei
    Xue, Bai
    Song, Meiping
    Yu, Chuanyan
    Li, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 4887 - 4898
  • [27] A projection pursuit algorithm for anomaly detection in hyperspectral imagery
    Malpica, Jose A.
    Rejas, Juan G.
    Alonso, Maria C.
    PATTERN RECOGNITION, 2008, 41 (11) : 3313 - 3327
  • [28] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [29] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +
  • [30] Multipixel Anomaly Detection With Unknown Patterns for Hyperspectral Imagery
    Liu, Jun
    Hou, Zengfu
    Li, Wei
    Tao, Ran
    Orlando, Danilo
    Li, Hongbin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5557 - 5567