Consensus Anomaly Detection Using Clustering Methods in Hyperspectral imagery

被引:0
|
作者
Amiel, Yoav [1 ]
Frajman, Adar [1 ]
Rotman, Stanley R. [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[2] Portland State Univ, Dept Elect & Comp Engn, Portland, OR 97207 USA
关键词
Image Processing; Hyperspectral; Anomalies detection; RX algorithm; NNMF algorithm; SSRX; Consensus Detection; Machine Learning;
D O I
10.1117/12.2568411
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A common anomaly detection algorithm for hyperspectral imagery is the RX algorithm based on the Mahalanobis distance of each pixel from the expected value of that pixel. This algorithm can be applied either directly on a hyperspectral image or on a dimensionality-reduced hyperspectral image. Recent work on Non-Negative Matrix Factorization (NNMF) provides a fast-iterative algorithm for decomposing a hyperspectral cube and achieving dimensionality reduction. In this paper, we present the RICHARD (Robust Iterative Consensus Anomaly RX Detection) algorithm that generates more than 100 RX tests after data manipulations (such as Principal Component Analysis (PCA) and NNMF) which vary in their specific parameters; we then use a weighted consensus voting process in order to detect anomalies without any prior knowledge. Using the RICHARD algorithm can enhance our options in finding obscure anomalies which do not appear in every algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Anomaly detection in hyperspectral imagery: A comparison of methods using seasonal data
    Hytla, Patrick
    Hardie, Russell C.
    Eismann, Michael T.
    Meola, Joseph
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [2] Study and Analysis on Anomaly Detection Methods for Hyperspectral Imagery
    Chen, Yuheng
    Zhou, Jiankang
    Chen, Xinhua
    Ji, Yiqun
    Shen, Weimin
    SIXTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2018), 2018, 10827
  • [3] Anomaly detection in hyperspectral imagery: comparison of methods using diurnal and seasonal data
    Hytla, Patrick C.
    Hardie, Russell C.
    Eismann, Michael T.
    Meola, Joseph
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [4] Anomaly detection in hyperspectral imagery
    Chang, CI
    Chiang, SS
    Ginsberg, IW
    GEO-SPATIAL IMAGE AND DATA EXPLOITATION II, 2001, 4383 : 43 - 50
  • [5] Global Anomaly Detection Combining Wavelet Transform and Clustering in Hyperspectral Imagery
    Zhang, Xiao-Han
    Yang, Guang
    He, Gao-Pan
    Huang, Jun-Hua
    2015 INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND INFORMATION SYSTEM (SEIS 2015), 2015, : 287 - 292
  • [6] Anomaly detection in hyperspectral imagery using Stable Distribution
    Mercan, S.
    Alam, Mohammad S.
    AUTOMATIC TARGET RECOGNITION XXI, 2011, 8049
  • [7] Hyperspectral Anomaly Detection Using Quantum Potential Clustering
    Tu, Bing
    Wang, Zhi
    Yang, Xianchang
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] Anomaly detection in hyperspectral imagery: an overview
    Ben Salem, Manel
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [9] Anomaly detection in noisy hyperspectral imagery
    Riley, RA
    Newsom, RK
    Andrews, AK
    IMAGING SPECTROMETRY X, 2004, 5546 : 159 - 170
  • [10] Characterization of anomaly detection in hyperspectral imagery
    Chang, Chein-I
    Hsueh, Mingkai
    Sensor Review, 2006, 26 (02) : 137 - 146