Effect of planting density on deep soil water and maize yield on the Loess Plateau of China

被引:35
|
作者
Zhang, Yuanhong [1 ,2 ]
Wang, Rui [1 ,2 ]
Wang, Shulan [1 ,2 ]
Ning, Fang [1 ,2 ]
Wang, Hao [1 ,2 ]
Wen, Pengfei [1 ,2 ]
Li, Ao [1 ,2 ]
Dong, Zhaoyang [1 ,2 ]
Xu, Zonggui [3 ]
Zhang, Yujiao [1 ,2 ]
Li, Jun [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr, Key Lab Crop Physi Ecol & Tillage Sci Northwester, Yangling 712100, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
关键词
Dryland maize; Plant density; Soil water balance; Source-sink ratio; ZEA-MAYS L; USE EFFICIENCY; CROP YIELD; IMPROVEMENT; STRESS; CORN;
D O I
10.1016/j.agwat.2019.05.039
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Dryland farmers tend to increase maize plant density with drought and density stress tolerance hybrids to achieve higher grain yield in recent years. However, could this strategy improve yield or water use efficiency (WUE) and be sustainable without decreasing deep soil water in drought-prone environments is not clear. A 4-year of successive field study was carried out with three different drought and density stress tolerance maize hybrids and four plant density arrange from 52,500 to 97,500 plants ha(-1). To quantify the responses of grain yield formation and WUE to increasing plant density under various rainfall condition and evaluate the effect on deep soil water balance. Results showed that using of drought and density stress tolerance hybrids could achieve higher grain yield and WUE with higher plant density in normal years, which was associated with an increase in kernels number per square meter. But in dry year, as fewer water was available during reproductive growth stage in higher plant density, grain yield and WUE was gradually decreased with increasing plant density, especially in density stress sensitive hybrid. Soil water balance at 0 to 200 cm depth was not broken by high plant density from the perspective of same water availability at sowing in each year, despite of the lower soil water content during maize growth stage. However, high plant density tended to consume more deep soil water which was hardly been replenished by precipitation, especially in high density tolerance hybrids. Hence, higher density that exceed 60000 plants ha(-1) couple with drought and density stress tolerance hybrids is a potential way to improve maize production in dryland, but it increases the risk of deep soil desiccation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China
    Cao, Ruixue
    Jia, Xiaoxu
    Huang, Laiming
    Zhu, Yuanjun
    Wu, Lianhai
    Shao, Ming'an
    SCIENTIFIC REPORTS, 2018, 8
  • [42] Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China
    Ruixue Cao
    Xiaoxu Jia
    Laiming Huang
    Yuanjun Zhu
    Lianhai Wu
    Ming’an Shao
    Scientific Reports, 8
  • [43] Estimating deep soil water depletion and availability under planted forest on the Loess Plateau, China
    Li, Peng
    Li, Huijie
    Si, Bingcheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 929
  • [44] Effects of biochar addition or grass planting on infiltrations into a sandy soil in the Loess Plateau in China
    Wu, Lei
    Xu, Liujia
    Yang, Hang
    Ma, Xiaoyi
    EARTH SURFACE PROCESSES AND LANDFORMS, 2024, 49 (12) : 3789 - 3805
  • [45] Conservation tillage improves the yield of summer maize by regulating soil water, photosynthesis and inferior kernel grain filling on the semiarid Loess Plateau, China
    Wang, Zhen
    Sun, Jun
    Du, Yadan
    Niu, Wenquan
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 102 (06) : 2330 - 2341
  • [46] Soil and water conservation on the Loess Plateau in China: review and perspective
    Chen, Liding
    Wei, Wet
    Fu, Bojie
    Lu, Yihe
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2007, 31 (04): : 389 - 403
  • [47] Optimizing plastic film mulch to improve the yield and water use efficiency of dryland maize in the Loess Plateau, China
    Zhang, Rui
    Zhang, Hongjuan
    Xing, Yunpeng
    Xue, Lian
    PLOS ONE, 2024, 19 (11):
  • [48] Effects of supplemental irrigation and plastic mulching on maize yield and water use efficiency in the Loess Plateau of Northwest China
    College of Life Science, Yan'an University, Yan'an, Shaanxi
    716000, China
    不详
    712100, China
    Taiwan Water Conservancy, 4 (84-96):
  • [49] Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau
    Lin, Wen
    Liu, Wenzhao
    Xue, Qingwu
    SCIENTIFIC REPORTS, 2016, 6
  • [50] Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau
    Wen Lin
    Wenzhao Liu
    Qingwu Xue
    Scientific Reports, 6