Effect of planting density on deep soil water and maize yield on the Loess Plateau of China

被引:35
|
作者
Zhang, Yuanhong [1 ,2 ]
Wang, Rui [1 ,2 ]
Wang, Shulan [1 ,2 ]
Ning, Fang [1 ,2 ]
Wang, Hao [1 ,2 ]
Wen, Pengfei [1 ,2 ]
Li, Ao [1 ,2 ]
Dong, Zhaoyang [1 ,2 ]
Xu, Zonggui [3 ]
Zhang, Yujiao [1 ,2 ]
Li, Jun [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr, Key Lab Crop Physi Ecol & Tillage Sci Northwester, Yangling 712100, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
关键词
Dryland maize; Plant density; Soil water balance; Source-sink ratio; ZEA-MAYS L; USE EFFICIENCY; CROP YIELD; IMPROVEMENT; STRESS; CORN;
D O I
10.1016/j.agwat.2019.05.039
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Dryland farmers tend to increase maize plant density with drought and density stress tolerance hybrids to achieve higher grain yield in recent years. However, could this strategy improve yield or water use efficiency (WUE) and be sustainable without decreasing deep soil water in drought-prone environments is not clear. A 4-year of successive field study was carried out with three different drought and density stress tolerance maize hybrids and four plant density arrange from 52,500 to 97,500 plants ha(-1). To quantify the responses of grain yield formation and WUE to increasing plant density under various rainfall condition and evaluate the effect on deep soil water balance. Results showed that using of drought and density stress tolerance hybrids could achieve higher grain yield and WUE with higher plant density in normal years, which was associated with an increase in kernels number per square meter. But in dry year, as fewer water was available during reproductive growth stage in higher plant density, grain yield and WUE was gradually decreased with increasing plant density, especially in density stress sensitive hybrid. Soil water balance at 0 to 200 cm depth was not broken by high plant density from the perspective of same water availability at sowing in each year, despite of the lower soil water content during maize growth stage. However, high plant density tended to consume more deep soil water which was hardly been replenished by precipitation, especially in high density tolerance hybrids. Hence, higher density that exceed 60000 plants ha(-1) couple with drought and density stress tolerance hybrids is a potential way to improve maize production in dryland, but it increases the risk of deep soil desiccation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China
    Li, Yushan
    Huang, Mingbin
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2008, 124 (1-2) : 24 - 32
  • [22] EFFECTS OF FERTILIZATION ON SOIL WATER USE EFFICIENCY AND CROP YIELD ON THE LOESS PLATEAU, CHINA
    Liu, Q.
    Mu, X. M.
    Zhao, G. J.
    Gao, P.
    Sun, W. Y.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2020, 18 (05): : 6555 - 6568
  • [23] An evaluation of EPIC soil water and yield components in the gully region of Loess Plateau, China
    Huang, M.
    Gallichand, J.
    Dang, T.
    Shao, M.
    JOURNAL OF AGRICULTURAL SCIENCE, 2006, 144 : 339 - 348
  • [24] Response of Soil Water and Wheat Yield to Rainfall and Temperature Change on the Loess Plateau, China
    Wang, Xuechun
    Qadir, Muslim
    Rasul, Fahd
    Yang, Guotao
    Hu, Yungao
    AGRONOMY-BASEL, 2018, 8 (07):
  • [25] Deep plowing increases soil water storage and wheat yield in a semiarid region of Loess Plateau in China: A simulation study
    Shi, Xinrui
    Li, Chao
    Li, Ping
    Zong, Yuzheng
    Zhang, Dongsheng
    Gao, Zhiqiang
    Hao, Xingyu
    Wang, Jing
    Lam, Shu Kee
    FIELD CROPS RESEARCH, 2024, 308
  • [26] How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China
    Zhou, Li-Min
    Li, Feng-Min
    Jin, Sheng-Li
    Song, Yajie
    FIELD CROPS RESEARCH, 2009, 113 (01) : 41 - 47
  • [27] Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China
    Ren, Yuanyuan
    Liu, Jiajia
    Wang, Zhiliang
    Zhang, Suiqi
    EUROPEAN JOURNAL OF AGRONOMY, 2016, 72 : 70 - 79
  • [28] Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China
    Zhao, Zhiyuan
    Zheng, Wei
    Ma, Yanting
    Wang, Xianling
    Li, Ziyan
    Zhai, Bingnian
    Wang, Zhaohui
    AGRICULTURAL WATER MANAGEMENT, 2020, 240 (240)
  • [29] Soil and water loss from the Loess Plateau in China
    Shi, H
    Shao, MG
    JOURNAL OF ARID ENVIRONMENTS, 2000, 45 (01) : 9 - 20
  • [30] Plastic film mulching on soil water and maize (Zea mays L.) yield in a ridge cultivation system on Loess Plateau of China
    Jiang, Rui
    Li, Xiao
    Zhou, Minghua
    Li, Hui Jie
    Zhao, Ying
    Yi, Jun
    Cui, Le Le
    Li, Ming
    Zhang, Jian Guo
    Qu, Dong
    SOIL SCIENCE AND PLANT NUTRITION, 2016, 62 (01) : 1 - 12