Parameter estimation and uncertainty quantification using information geometry

被引:8
|
作者
Sharp, Jesse A. [1 ,2 ]
Browning, Alexander P. [1 ,2 ]
Burrage, Kevin [1 ,2 ,3 ]
Simpson, Matthew J. [1 ,4 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
[2] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld, Australia
[3] Univ Oxford, Dept Comp Sci, Oxford, England
[4] Queensland Univ Technol, Ctr Data Sci, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
inference; likelihood; population models; logistic growth; epidemic models; APPROXIMATE BAYESIAN COMPUTATION; IDENTIFIABILITY ANALYSIS; MONTE-CARLO; FISHER INFORMATION; MODEL SELECTION; INFERENCE; SENSITIVITY; DIVERGENCE; LIKELIHOOD; GROWTH;
D O I
10.1098/rsif.2021.0940
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we: (i) review likelihood-based inference for parameter estimation and the construction of confidence regions; and (ii) explore the use of techniques from information geometry, including geodesic curves and Riemann scalar curvature, to supplement typical techniques for uncertainty quantification, such as Bayesian methods, profile likelihood, asymptotic analysis and bootstrapping. These techniques from information geometry provide data-independent insights into uncertainty and identifiability, and can be used to inform data collection decisions. All code used in this work to implement the inference and information geometry techniques is available on GitHub.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Uncertainty Quantification of Detonation with High-dimensional Parameter Uncertainty
    Liang X.
    Chen J.
    Wang R.
    Binggong Xuebao/Acta Armamentarii, 2020, 41 (04): : 692 - 701
  • [42] A Methodology for the Efficient Quantification of Parameter and Model Uncertainty
    Feldmann, R.
    Gehb, C. M.
    Schaeffner, M.
    Melz, T.
    JOURNAL OF VERIFICATION, VALIDATION AND UNCERTAINTY QUANTIFICATION, 2022, 7 (03):
  • [43] A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2025, 102
  • [44] Elevating the possibilities of meshless groundwater flow modeling: a developed approach for parameter estimation and uncertainty quantification
    Khorashadizadeh, Mahdi
    Abghari, Siavash
    Akbarpour, Abolfazl
    Mohtashami, Ali
    Hashemi Monfared, Seyed Arman
    ACTA GEOPHYSICA, 2024, 72 (06) : 4373 - 4393
  • [45] Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos
    Janya-anurak, Chettapong
    Bernard, Thomas
    Beyerer, Juergen
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (04) : 283 - 303
  • [46] Uncertainty quantification in estimation of extreme environments
    Jones, Matthew
    Hansen, Hans Fabricius
    Zeeberg, Allan Rod
    Randell, David
    Jonathan, Philip
    COASTAL ENGINEERING, 2018, 141 : 36 - 51
  • [47] A review of uncertainty quantification for density estimation
    McDonald, Shaun
    Campbell, David
    STATISTICS SURVEYS, 2021, 15 : 1 - 71
  • [48] Uncertainty Quantification in Mineral Resource Estimation
    Lindi, Oltingey Tuya
    Aladejare, Adeyemi Emman
    Ozoji, Toochukwu Malachi
    Ranta, Jukka-Pekka
    NATURAL RESOURCES RESEARCH, 2024, 33 (06) : 2503 - 2526
  • [49] Realistic Assessment of Parameter Uncertainty in Dynamic Parameter Estimation
    Shacham, Mordechai
    Brauner, Neima
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2017, 40A : 283 - 288
  • [50] ON MONOCULAR DEPTH ESTIMATION AND UNCERTAINTY QUANTIFICATION USING CLASSIFICATION APPROACHES FOR REGRESSION
    Yu, Xuanlong
    Franchi, Gianni
    Aldea, Emanuel
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1481 - 1485