Parameter estimation and uncertainty quantification using information geometry

被引:8
|
作者
Sharp, Jesse A. [1 ,2 ]
Browning, Alexander P. [1 ,2 ]
Burrage, Kevin [1 ,2 ,3 ]
Simpson, Matthew J. [1 ,4 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
[2] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld, Australia
[3] Univ Oxford, Dept Comp Sci, Oxford, England
[4] Queensland Univ Technol, Ctr Data Sci, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
inference; likelihood; population models; logistic growth; epidemic models; APPROXIMATE BAYESIAN COMPUTATION; IDENTIFIABILITY ANALYSIS; MONTE-CARLO; FISHER INFORMATION; MODEL SELECTION; INFERENCE; SENSITIVITY; DIVERGENCE; LIKELIHOOD; GROWTH;
D O I
10.1098/rsif.2021.0940
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we: (i) review likelihood-based inference for parameter estimation and the construction of confidence regions; and (ii) explore the use of techniques from information geometry, including geodesic curves and Riemann scalar curvature, to supplement typical techniques for uncertainty quantification, such as Bayesian methods, profile likelihood, asymptotic analysis and bootstrapping. These techniques from information geometry provide data-independent insights into uncertainty and identifiability, and can be used to inform data collection decisions. All code used in this work to implement the inference and information geometry techniques is available on GitHub.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification
    Chi Zhang
    Martin F. Lambert
    Jinzhe Gong
    Aaron C. Zecchin
    Angus R. Simpson
    Mark L. Stephens
    Water Resources Management, 2020, 34 : 2807 - 2820
  • [32] Direct Regional Quantification and Uncertainty Estimation Using Origin Filinsembles
    Gillam, J. E.
    Angelis, G. I.
    Meikle, S. R.
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [33] Uncertainty Quantification in Graphon Estimation Using Generalized Fiducial Inference
    Su, Yi
    Hannig, Jan
    Lee, Thomas C. M.
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 597 - 609
  • [34] Computed tomography with view angle estimation using uncertainty quantification
    Brogaard Riis, Nicolai Andre
    Dong, Yiqiu
    Hansen, Per Christian
    INVERSE PROBLEMS, 2021, 37 (06)
  • [35] Detuning Estimation Measurement Uncertainty Quantification Using Descriptive Statistics
    Keshwani, Rajesh T.
    Mukhopadhyay, S.
    Gudi, R. D.
    Joshi, Gopal
    MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2025,
  • [36] A Framework for Parameter Estimation and Uncertainty Quantification in Systems Biology Using Quantile Regression and Physics-Informed Neural Networks
    Hu, Haoran
    Cheng, Qianru
    Guo, Shuli
    Wen, Huifang
    Zhang, Jing
    Song, Yongqi
    Wang, Kaiqun
    Huang, Di
    Zhang, Hui
    Zhang, Chaofeng
    Shan, Yanhu
    BULLETIN OF MATHEMATICAL BIOLOGY, 2025, 87 (05)
  • [37] Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel
    Wan, Hua-Ping
    Mao, Zhu
    Todd, Michael D.
    Ren, Wei-Xin
    ENGINEERING STRUCTURES, 2014, 75 : 577 - 589
  • [38] Adaptive Information Fusion Using Evidence Theory and Uncertainty Quantification
    Arevalo, Fernando
    Alison, M. P. Christian
    Ibrahim, M. Tahasanul
    Schwung, Andreas
    IEEE ACCESS, 2024, 12 : 2236 - 2259
  • [39] Polynomial Regression Approaches Using Derivative Information for Uncertainty Quantification
    Roderick, Oleg
    Anitescu, Mihai
    Fischer, Paul
    NUCLEAR SCIENCE AND ENGINEERING, 2010, 164 (02) : 122 - 139
  • [40] The Riemannian geometry of certain parameter estimation problems with singular fisher information matrices
    Xavier, J
    Barroso, V
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 1021 - 1024